Suppr超能文献

在培养皿中模拟心脏病:从体细胞到与疾病相关的心肌细胞。

Modeling heart disease in a dish: from somatic cells to disease-relevant cardiomyocytes.

机构信息

Department of Medicine (Cardiology Division), University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

Department of Medicine (Cardiology Division), University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

出版信息

Trends Cardiovasc Med. 2014 Jan;24(1):32-44. doi: 10.1016/j.tcm.2013.06.002. Epub 2013 Sep 17.

Abstract

A scientific milestone that has tremendously impacted the cardiac research field has been the discovery and establishment of human-induced pluripotent stem cells (hiPSC). Key to this discovery has been uncovering a viable path in generating human patient and disease-specific cardiac cells to dynamically model and study human cardiac diseases in an in vitro setting. Recent studies have demonstrated that hiPSC-derived cardiomyocytes can be used to model and recapitulate various known disease features in hearts of patient donors harboring genetic-based cardiac diseases. Experimental drugs have also been tested in this setting and shown to alleviate disease phenotypes in hiPSC-derived cardiomyocytes, further paving the way for therapeutic interventions for cardiac disease. Here, we review state-of-the-art methods to generate high-quality hiPSC and differentiate them towards cardiomyocytes as well as the full range of genetic-based cardiac diseases, which have been modeled using hiPSC. We also provide future perspectives on exploiting the potential of hiPSC to compliment existing studies and gain new insights into the mechanisms underlying cardiac disease.

摘要

一个具有重大影响的医学研究领域的科学里程碑是人类诱导多能干细胞(hiPSC)的发现和建立。这一发现的关键在于找到了一条可行的途径,可以生成人类患者和疾病特异性的心脏细胞,以便在体外环境中动态模拟和研究人类心脏疾病。最近的研究表明,hiPSC 衍生的心肌细胞可用于模拟和再现携带基于遗传的心脏疾病的患者供体心脏中的各种已知疾病特征。在这种情况下,也已经测试了实验药物,并显示出可减轻 hiPSC 衍生的心肌细胞中的疾病表型,进一步为心脏疾病的治疗干预铺平了道路。在这里,我们回顾了生成高质量 hiPSC 并将其分化为心肌细胞的最新方法,以及使用 hiPSC 模拟的各种基于遗传的心脏疾病。我们还提供了利用 hiPSC 的潜力来补充现有研究并深入了解心脏疾病潜在机制的未来展望。

相似文献

1
Modeling heart disease in a dish: from somatic cells to disease-relevant cardiomyocytes.
Trends Cardiovasc Med. 2014 Jan;24(1):32-44. doi: 10.1016/j.tcm.2013.06.002. Epub 2013 Sep 17.
2
Maturation status of sarcomere structure and function in human iPSC-derived cardiac myocytes.
Biochim Biophys Acta. 2016 Jul;1863(7 Pt B):1829-38. doi: 10.1016/j.bbamcr.2015.11.005. Epub 2015 Nov 11.
5
In vitro uses of human pluripotent stem cell-derived cardiomyocytes.
J Cardiovasc Transl Res. 2012 Oct;5(5):581-92. doi: 10.1007/s12265-012-9376-5. Epub 2012 May 26.
6
Modelling sarcomeric cardiomyopathies in the dish: from human heart samples to iPSC cardiomyocytes.
Cardiovasc Res. 2015 Apr 1;105(4):424-38. doi: 10.1093/cvr/cvv017. Epub 2015 Jan 24.
9
Modeling of arrhythmogenic right ventricular cardiomyopathy with human induced pluripotent stem cells.
Circ Cardiovasc Genet. 2013 Dec;6(6):557-68. doi: 10.1161/CIRCGENETICS.113.000188. Epub 2013 Nov 7.

引用本文的文献

2
Translational potential of hiPSCs in predictive modeling of heart development and disease.
Birth Defects Res. 2022 Oct 1;114(16):926-947. doi: 10.1002/bdr2.1999. Epub 2022 Mar 9.
3
Engineered Heart Slice Model of Arrhythmogenic Cardiomyopathy Using Plakophilin-2 Mutant Myocytes.
Tissue Eng Part A. 2019 May;25(9-10):725-735. doi: 10.1089/ten.TEA.2018.0272. Epub 2019 Feb 15.
4
Autonomous and Non-autonomous Defects Underlie Hypertrophic Cardiomyopathy in BRAF-Mutant hiPSC-Derived Cardiomyocytes.
Stem Cell Reports. 2016 Sep 13;7(3):355-369. doi: 10.1016/j.stemcr.2016.07.018. Epub 2016 Aug 25.
5
Biology of the cardiac myocyte in heart disease.
Mol Biol Cell. 2016 Jul 15;27(14):2149-60. doi: 10.1091/mbc.E16-01-0038.
6
Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems.
J Mol Cell Cardiol. 2016 May;94:22-31. doi: 10.1016/j.yjmcc.2016.03.005. Epub 2016 Mar 18.
7
Lessons from Toxicology: Developing a 21st-Century Paradigm for Medical Research.
Environ Health Perspect. 2015 Nov;123(11):A268-72. doi: 10.1289/ehp.1510345.
8
CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels.
BMC Bioinformatics. 2015 Oct 26;16:344. doi: 10.1186/s12859-015-0782-y.

本文引用的文献

2
Topological and electrical control of cardiac differentiation and assembly.
Stem Cell Res Ther. 2013 Feb 14;4(1):14. doi: 10.1186/scrt162.
3
Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture.
Circ J. 2013;77(5):1307-14. doi: 10.1253/circj.cj-12-0987. Epub 2013 Feb 9.
4
Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs.
Nature. 2013 Feb 7;494(7435):105-10. doi: 10.1038/nature11799. Epub 2013 Jan 27.
6
Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes.
Cell Stem Cell. 2013 Jan 3;12(1):127-37. doi: 10.1016/j.stem.2012.09.013. Epub 2012 Nov 15.
8
Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias.
Front Physiol. 2012 Aug 31;3:346. doi: 10.3389/fphys.2012.00346. eCollection 2012.
9
Cell model of catecholaminergic polymorphic ventricular tachycardia reveals early and delayed afterdepolarizations.
PLoS One. 2012;7(9):e44660. doi: 10.1371/journal.pone.0044660. Epub 2012 Sep 4.
10
Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method.
Circ Res. 2012 Oct 12;111(9):1125-36. doi: 10.1161/CIRCRESAHA.112.273144. Epub 2012 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验