Suppr超能文献

水动力辅助规模化制备氮化硼纳米片及其在提高聚合物基复合材料抗原子氧侵蚀性能中的应用。

Hydrodynamics-assisted scalable production of boron nitride nanosheets and their application in improving oxygen-atom erosion resistance of polymeric composites.

机构信息

Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191, China.

出版信息

Nanoscale. 2013 Nov 7;5(21):10660-7. doi: 10.1039/c3nr03714b. Epub 2013 Sep 23.

Abstract

Searching for a method for low-cost, easily manageable, and scalable production of boron nitride nanosheets (BNNSs) and exploring their novel applications are highly important. For the first time we demonstrate that a novel and effective hydrodynamics method, which involves multiple exfoliation mechanisms and thus leads to much higher yield and efficiency, can realize large-scale production of BNNSs. The exfoliation mechanisms that multiple fluid dynamics events contribute towards normal and lateral exfoliation processes could be applied to other layered materials. Up to ~95% of the prepared BNNSs are less than 3.5 nm thick with a monolayer fraction of ~37%. Compared to the conventional sonication and ball milling-based methods, the hydrodynamics method has the advantages of possessing multiple efficient ways for exfoliating BN, being low-cost and environmentally-friendly, producing high quality BNNSs in high yield and efficiency, and achieving concentrated BNNSs dispersions even in mediocre solvents. It is also shown for the first time that BNNSs can be utilized as fillers to improve the oxygen-atom erosion resistance of epoxy composites which are widely used for spacecraft in low earth orbit (LEO) where atom oxygen abounds. An addition of only 0.5 wt% BNNSs can result in a 70% decrease in the mass loss of epoxy composites after atom oxygen exposure equivalent to 160 days in an orbit of ~300 km. Overall, the demonstrated hydrodynamics method shows great potential in large-scale production of BNNSs in industry in terms of yield, efficiency, and environmental friendliness; and the innovative application of BNNSs to enhancing oxygen-atom erosion resistance of polymeric composites in space may provide a novel route for designing light spacecraft in LEO.

摘要

寻找低成本、易管理且可扩展的氮化硼纳米片 (BNNS) 生产方法,并探索其新的应用,这一点非常重要。我们首次证明,一种新颖且有效的流体动力学方法,涉及多种剥离机制,因此具有更高的产率和效率,可实现 BNNS 的大规模生产。多种流体动力学事件有助于实现正常和横向剥离过程的剥离机制可应用于其他层状材料。所制备的 BNNS 中,多达95%的厚度小于 3.5nm,单层分数约为37%。与传统的超声和球磨基方法相比,流体动力学方法具有以下优点:具有多种高效的 BN 剥离方法,成本低且环保,以高产率和高效率生产高质量的 BNNS,并实现即使在中等溶剂中也具有高浓度的 BNNS 分散体。首次表明 BNNS 可用作填料,以提高广泛用于低地球轨道 (LEO) 中富含原子氧的航天器的环氧复合材料的耐氧原子侵蚀性。仅添加 0.5wt%的 BNNS 就可以使环氧复合材料在原子氧暴露下的质量损失减少 70%,相当于在~300km 的轨道上暴露 160 天。总的来说,所展示的流体动力学方法在产量、效率和环保方面在工业上大规模生产 BNNS 方面显示出巨大的潜力;将 BNNS 创新应用于增强聚合物复合材料在太空中的耐氧原子侵蚀性,可能为设计 LEO 中的轻型航天器提供一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验