Suppr超能文献

大规模生物节律研究的设计与分析:生物数据中周期性信号检测算法的比较。

Design and analysis of large-scale biological rhythm studies: a comparison of algorithms for detecting periodic signals in biological data.

机构信息

Program in Computational Biology and Bioinformatics, Department of Mathematics, Duke University, Durham, NC 27708, USA, Department of Medicine, Department of Pharmacology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA and Department of Biology, Duke University, Durham, NC 27708, USA.

出版信息

Bioinformatics. 2013 Dec 15;29(24):3174-80. doi: 10.1093/bioinformatics/btt541. Epub 2013 Sep 20.

Abstract

MOTIVATION

To discover and study periodic processes in biological systems, we sought to identify periodic patterns in their gene expression data. We surveyed a large number of available methods for identifying periodicity in time series data and chose representatives of different mathematical perspectives that performed well on both synthetic data and biological data. Synthetic data were used to evaluate how each algorithm responds to different curve shapes, periods, phase shifts, noise levels and sampling rates. The biological datasets we tested represent a variety of periodic processes from different organisms, including the cell cycle and metabolic cycle in Saccharomyces cerevisiae, circadian rhythms in Mus musculus and the root clock in Arabidopsis thaliana.

RESULTS

From these results, we discovered that each algorithm had different strengths. Based on our findings, we make recommendations for selecting and applying these methods depending on the nature of the data and the periodic patterns of interest. Additionally, these results can also be used to inform the design of large-scale biological rhythm experiments so that the resulting data can be used with these algorithms to detect periodic signals more effectively.

摘要

动机

为了发现和研究生物系统中的周期性过程,我们试图在其基因表达数据中识别周期性模式。我们调查了大量可用于识别时间序列数据中周期性的方法,并选择了在合成数据和生物数据上表现良好的不同数学观点的代表。使用合成数据来评估每个算法如何响应不同的曲线形状、周期、相位偏移、噪声水平和采样率。我们测试的生物数据集代表了来自不同生物体的各种周期性过程,包括酿酒酵母的细胞周期和代谢周期、小家鼠的昼夜节律和拟南芥的根时钟。

结果

根据这些结果,我们发现每个算法都有不同的优势。基于我们的发现,我们根据数据的性质和感兴趣的周期性模式,推荐选择和应用这些方法。此外,这些结果还可以用于为大规模生物节律实验的设计提供信息,以便可以使用这些算法更有效地检测周期性信号。

相似文献

1
Design and analysis of large-scale biological rhythm studies: a comparison of algorithms for detecting periodic signals in biological data.
Bioinformatics. 2013 Dec 15;29(24):3174-80. doi: 10.1093/bioinformatics/btt541. Epub 2013 Sep 20.
3
Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation.
Bioinformatics. 2010 Jun 15;26(12):i168-74. doi: 10.1093/bioinformatics/btq189.
5
Discovering Biology in Periodic Data through Phase Set Enrichment Analysis (PSEA).
J Biol Rhythms. 2016 Jun;31(3):244-57. doi: 10.1177/0748730416631895. Epub 2016 Mar 8.
7
Evolution and regulation of cellular periodic processes: a role for paralogues.
EMBO Rep. 2010 Mar;11(3):233-8. doi: 10.1038/embor.2010.9. Epub 2010 Feb 19.
8
The circadian clock and cell cycle: interconnected biological circuits.
Curr Opin Cell Biol. 2013 Dec;25(6):730-4. doi: 10.1016/j.ceb.2013.07.013. Epub 2013 Aug 19.
9
Frequency-based time-series gene expression recomposition using PRIISM.
BMC Syst Biol. 2012 Jun 15;6:69. doi: 10.1186/1752-0509-6-69.
10
LSPR: an integrated periodicity detection algorithm for unevenly sampled temporal microarray data.
Bioinformatics. 2011 Apr 1;27(7):1023-5. doi: 10.1093/bioinformatics/btr041. Epub 2011 Feb 3.

引用本文的文献

2
Identification and correction of time-series transcriptomic anomalies.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf524.
3
Augmenting Circadian Biology Research With Data Science.
J Biol Rhythms. 2025 Apr;40(2):143-170. doi: 10.1177/07487304241310923. Epub 2025 Jan 29.
5
Proteome-scale movements and compartment connectivity during the eukaryotic cell cycle.
Cell. 2024 Mar 14;187(6):1490-1507.e21. doi: 10.1016/j.cell.2024.02.014. Epub 2024 Mar 6.
6
Molecular Mechanisms of Seasonal Gene Expression in Trees.
Int J Mol Sci. 2024 Jan 30;25(3):1666. doi: 10.3390/ijms25031666.
7
Metabolic Basis of Circadian Dysfunction in Parkinson's Disease.
Biology (Basel). 2023 Sep 28;12(10):1294. doi: 10.3390/biology12101294.
9
Circadian regulation of pulmonary disease: the importance of timing.
Clin Sci (Lond). 2023 Jun 14;137(11):895-912. doi: 10.1042/CS20220061.

本文引用的文献

1
Randomization techniques for assessing the significance of gene periodicity results.
BMC Bioinformatics. 2011 Aug 9;12:330. doi: 10.1186/1471-2105-12-330.
2
LSPR: an integrated periodicity detection algorithm for unevenly sampled temporal microarray data.
Bioinformatics. 2011 Apr 1;27(7):1023-5. doi: 10.1093/bioinformatics/btr041. Epub 2011 Feb 3.
4
Oscillating gene expression determines competence for periodic Arabidopsis root branching.
Science. 2010 Sep 10;329(5997):1306-11. doi: 10.1126/science.1191937.
5
Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation.
Bioinformatics. 2010 Jun 15;26(12):i168-74. doi: 10.1093/bioinformatics/btq189.
6
Harmonics of circadian gene transcription in mammals.
PLoS Genet. 2009 Apr;5(4):e1000442. doi: 10.1371/journal.pgen.1000442. Epub 2009 Apr 3.
7
Comparison of pattern detection methods in microarray time series of the segmentation clock.
PLoS One. 2008 Aug 6;3(8):e2856. doi: 10.1371/journal.pone.0002856.
8
Detecting periodic genes from irregularly sampled gene expressions: a comparison study.
EURASIP J Bioinform Syst Biol. 2008;2008(1):769293. doi: 10.1155/2008/769293.
9
Global control of cell-cycle transcription by coupled CDK and network oscillators.
Nature. 2008 Jun 12;453(7197):944-7. doi: 10.1038/nature06955. Epub 2008 May 7.
10
Are we overestimating the number of cell-cycling genes? The impact of background models on time-series analysis.
Bioinformatics. 2008 Apr 15;24(8):1063-9. doi: 10.1093/bioinformatics/btn072. Epub 2008 Feb 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验