Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, CCS, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ 21949-902, Brazil.
J Neurosci Methods. 2014 Jan 15;221:112-26. doi: 10.1016/j.jneumeth.2013.09.012. Epub 2013 Sep 29.
An important issue for neurophysiological studies of the visual system is the definition of the region of the visual field that can modify a neuron's activity (i.e., the neuron's receptive field - RF). Usually a trade-off exists between precision and the time required to map a RF. Manual methods (qualitative) are fast but impose a variable degree of imprecision, while quantitative methods are more precise but usually require more time. We describe a rapid quantitative method for mapping visual RFs that is derived from computerized tomography and named back-projection. This method finds the intersection of responsive regions of the visual field based on spike density functions that are generated over time in response to long bars moving in different directions. An algorithm corrects the response profiles for latencies and allows for the conversion of the time domain into a 2D-space domain. The final product is an RF map that shows the distribution of the neuronal activity in visual-spatial coordinates. In addition to mapping the RF, this method also provides functional properties, such as latency, orientation and direction preference indexes. This method exhibits the following beneficial properties: (a) speed; (b) ease of implementation; (c) precise RF localization; (d) sensitivity (this method can map RFs based on few responses); (e) reliability (this method provides consistent information about RF shapes and sizes, which will allow for comparative studies); (f) comprehensiveness (this method can scan for RFs over an extensive area of the visual field); (g) informativeness (it provides functional quantitative data about the RF); and (h) usefulness (this method can map RFs in regions without direct retinal inputs, such as the cortical representations of the optic disc and of retinal lesions, which should allow for studies of functional connectivity, reorganization and neural plasticity). Furthermore, our method allows for precise mapping of RFs in a 30° by 30° area of the visual field for an array of microelectrodes of any size in less than 6 min.
神经生理学视觉系统研究的一个重要问题是确定能够改变神经元活动的视野区域(即神经元的感受野 - RF)。通常,在映射 RF 的精度和所需时间之间存在权衡。手动方法(定性)快速,但精度不一,而定量方法更精确,但通常需要更多时间。我们描述了一种快速定量方法,用于映射视觉 RF,该方法源自计算机断层扫描,名为反向投影。该方法基于随时间生成的对不同方向移动的长条形刺激的 Spike 密度函数,找到视野中响应区域的交点。一种算法可以校正响应轮廓的潜伏期,并允许将时域转换为 2D 空间域。最终产物是一个 RF 图,显示了神经元活动在视觉空间坐标中的分布。除了映射 RF 之外,该方法还提供了功能特性,例如潜伏期、方向和方向偏好指数。该方法具有以下有益特性:(a)速度;(b)易于实施;(c)精确的 RF 定位;(d)灵敏度(该方法可以基于少量响应来映射 RF);(e)可靠性(该方法提供了关于 RF 形状和大小的一致信息,这将允许进行比较研究);(f)全面性(该方法可以扫描视野的广泛区域的 RF);(g)信息量(它提供了有关 RF 的功能定量数据);和(h)实用性(该方法可以映射没有直接视网膜输入的区域的 RF,例如视盘和视网膜病变的皮质代表区域,这应该允许对功能连接、重组和神经可塑性进行研究)。此外,我们的方法允许在不到 6 分钟的时间内,对任何大小的微电极阵列在 30°×30°的视野区域内精确映射 RF。