Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, and Department of Psychology, University of Connecticut, Storrs, Connecticut 06269.
J Neurosci. 2013 Oct 2;33(40):15915-29. doi: 10.1523/JNEUROSCI.5088-12.2013.
Spike timing-dependent plasticity (STDP) and other conventional Hebbian-type plasticity rules are prone to produce runaway dynamics of synaptic weights. Once potentiated, a synapse would have higher probability to lead to spikes and thus to be further potentiated, but once depressed, a synapse would tend to be further depressed. The runaway synaptic dynamics can be prevented by precisely balancing STDP rules for potentiation and depression; however, experimental evidence shows a great variety of potentiation and depression windows and magnitudes. Here we show that modifications of synapses to layer 2/3 pyramidal neurons from rat visual and auditory cortices in slices can be induced by intracellular tetanization: bursts of postsynaptic spikes without presynaptic stimulation. Induction of these heterosynaptic changes depended on the rise of intracellular calcium, and their direction and magnitude correlated with initial state of release mechanisms. We suggest that this type of plasticity serves as a mechanism that stabilizes the distribution of synaptic weights and prevents their runaway dynamics. To test this hypothesis, we develop a cortical neuron model implementing both homosynaptic (STDP) and heterosynaptic plasticity with properties matching the experimental data. We find that heterosynaptic plasticity effectively prevented runaway dynamics for the tested range of STDP and input parameters. Synaptic weights, although shifted from the original, remained normally distributed and nonsaturated. Our study presents a biophysically constrained model of how the interaction of different forms of plasticity--Hebbian and heterosynaptic--may prevent runaway synaptic dynamics and keep synaptic weights unsaturated and thus capable of further plastic changes and formation of new memories.
突触时变可塑性 (STDP) 和其他传统的赫布型可塑性规则容易产生突触权重的失控动态。一旦增强,突触更有可能引发尖峰,从而进一步增强,但一旦抑制,突触更倾向于进一步抑制。通过精确平衡增强和抑制的 STDP 规则可以防止失控的突触动力学;然而,实验证据表明,增强和抑制的窗口和幅度有很大的差异。在这里,我们展示了通过在切片中对来自大鼠视觉和听觉皮层的 2/3 层锥体神经元进行细胞内强直刺激,可以诱导突触的修饰:没有突触前刺激的突触后尖峰爆发。这些异突触变化的诱导取决于细胞内钙的增加,它们的方向和幅度与释放机制的初始状态相关。我们认为这种类型的可塑性作为一种机制,可以稳定突触权重的分布,并防止它们的失控动态。为了验证这一假设,我们开发了一个皮质神经元模型,该模型实现了与实验数据相匹配的同突触(STDP)和异突触可塑性。我们发现,异突触可塑性有效地防止了测试范围内的 STDP 和输入参数的失控动态。虽然突触权重从原始值发生了偏移,但仍保持正态分布且不饱和。我们的研究提出了一个具有生物约束的模型,说明不同形式的可塑性——赫布型和异突触型——如何相互作用,以防止突触权重的失控动态,并保持突触权重不饱和,从而能够进行进一步的可塑性变化和形成新的记忆。