Suppr超能文献

如何估计与祖先比例估计相关的测量误差方差。

How to estimate the measurement error variance associated with ancestry proportion estimates.

作者信息

Divers Jasmin, Redden David T, Carroll Raymond J, Allison David B

出版信息

Stat Interface. 2011 Jul 1;4(3):327-337. doi: 10.4310/SII.2011.v4.n3.a7.

Abstract

To show how the variance of the measurement error (ME) associated with individual ancestry proportion estimates can be estimated, especially when the number of ancestral populations () is greater than 2. We extend existing internal consistency measures to estimate the ME variance, and we compare these estimates with the ME variance estimated by use of the repeated measurement (RM) approach. Both approaches work by dividing the genotyped markers into subsets. We examine the effect of the number of subsets and of the allocation of markers to each subset on the performance of each approach. We used simulated data for all comparisons. Independently of the value of , the measures of internal reliability provided less biased and more precise estimates of the ME variance than did those obtained with the RM approach. Both methods tend to perform better when a large number of subsets of markers with similar sizes are considered. Our results will facilitate the use of ME correction methods to address the ME problem in individual ancestry proportion estimates. Our method will improve the ability to control for type I error inflation and loss of power in association tests and other genomic research involving ancestry estimates.

摘要

为了展示如何估计与个体祖先比例估计相关的测量误差(ME)的方差,特别是当祖先群体数量()大于2时。我们扩展了现有的内部一致性度量方法来估计ME方差,并将这些估计值与使用重复测量(RM)方法估计的ME方差进行比较。两种方法都是通过将基因分型标记划分为子集来实现的。我们研究了子集数量以及每个子集标记分配对每种方法性能的影响。我们在所有比较中都使用了模拟数据。无论的值如何,内部可靠性度量提供的ME方差估计比RM方法获得的估计偏差更小、更精确。当考虑大量大小相似的标记子集时,这两种方法往往表现得更好。我们的结果将有助于使用ME校正方法来解决个体祖先比例估计中的ME问题。我们的方法将提高在关联测试和其他涉及祖先估计的基因组研究中控制I型错误膨胀和功效损失的能力。

相似文献

1
How to estimate the measurement error variance associated with ancestry proportion estimates.
Stat Interface. 2011 Jul 1;4(3):327-337. doi: 10.4310/SII.2011.v4.n3.a7.
2
Correcting for measurement error in individual ancestry estimates in structured association tests.
Genetics. 2007 Jul;176(3):1823-33. doi: 10.1534/genetics.107.075408. Epub 2007 May 16.
4
A Comparison of Classical and Modern Measures of Internal Consistency.
Front Psychol. 2019 Dec 4;10:2714. doi: 10.3389/fpsyg.2019.02714. eCollection 2019.
6
A fast least-squares algorithm for population inference.
BMC Bioinformatics. 2013 Jan 23;14:28. doi: 10.1186/1471-2105-14-28.
7
Estimating heritability explained by local ancestry and evaluating stratification bias in admixture mapping from summary statistics.
Am J Hum Genet. 2023 Nov 2;110(11):1853-1862. doi: 10.1016/j.ajhg.2023.09.012. Epub 2023 Oct 23.
8
On the impact of relatedness on SNP association analysis.
BMC Genet. 2017 Dec 6;18(1):104. doi: 10.1186/s12863-017-0571-x.
9
Comparison of measures of marker informativeness for ancestry and admixture mapping.
BMC Genomics. 2011 Dec 20;12:622. doi: 10.1186/1471-2164-12-622.

引用本文的文献

1
Contribution of promoter region gene polymorphism to early-onset prostate cancer risk in Mexican males.
Oncotarget. 2019 Jan 22;10(7):738-748. doi: 10.18632/oncotarget.26592.

本文引用的文献

2
A note on the estimation of test reliability by the Kuder-Richardson formula (20).
Psychometrika. 1949 Jun;14(2):117-9. doi: 10.1007/BF02289147.
3
A randomization test for controlling population stratification in whole-genome association studies.
Am J Hum Genet. 2007 Nov;81(5):895-905. doi: 10.1086/521372. Epub 2007 Sep 12.
4
Recent genetic selection in the ancestral admixture of Puerto Ricans.
Am J Hum Genet. 2007 Sep;81(3):626-33. doi: 10.1086/520769. Epub 2007 Aug 1.
5
Correcting for measurement error in individual ancestry estimates in structured association tests.
Genetics. 2007 Jul;176(3):1823-33. doi: 10.1534/genetics.107.075408. Epub 2007 May 16.
6
Population structure and eigenanalysis.
PLoS Genet. 2006 Dec;2(12):e190. doi: 10.1371/journal.pgen.0020190.
7
Regional admixture mapping and structured association testing: conceptual unification and an extensible general linear model.
PLoS Genet. 2006 Aug 25;2(8):e137. doi: 10.1371/journal.pgen.0020137. Epub 2006 Jul 18.
8
Principal components analysis corrects for stratification in genome-wide association studies.
Nat Genet. 2006 Aug;38(8):904-9. doi: 10.1038/ng1847. Epub 2006 Jul 23.
9
Estimation of individual admixture: analytical and study design considerations.
Genet Epidemiol. 2005 May;28(4):289-301. doi: 10.1002/gepi.20064.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验