Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614, United States.
Sci Total Environ. 2014 Jan 15;468-469:968-76. doi: 10.1016/j.scitotenv.2013.09.006. Epub 2013 Sep 30.
Mechanism underlying nanotoxicity has remained elusive. Hence, efforts to understand whether nanoparticle properties might explain its toxicity are ongoing. Considering three different types of organo-coated silver nanoparticles (AgNPs): citrate-coated AgNP, polyvinylpyrrolidone-coated AgNP, and branched polyethyleneimine-coated AgNP, with different surface charge scenarios and core particle sizes, herein we systematically evaluate the potential role of particle size and surface charge on the toxicity of the three types of AgNPs against two model organisms, Escherichia coli and Daphnia magna. We find particle size, surface charge, and concentration dependent toxicity of all the three types of AgNPs against both the test organisms. Notably, Ag(+) (as added AgNO3) toxicity is greater than each type of AgNPs tested and the toxicity follows the trend: AgNO3 > BPEI-AgNP > Citrate-AgNP > PVP-AgNP. Modeling particle properties using the general linear model (GLM), a significant interaction effect of primary particle size and surface charge emerges that can explain empirically-derived acute toxicity with great precision. The model explains 99.9% variation of toxicity in E. coli and 99.8% variation of toxicity in D. magna, revealing satisfactory predictability of the regression models developed to predict the toxicity of the three organo-coated AgNPs. We anticipate that the use of GLM to satisfactorily predict the toxicity based on nanoparticle physico-chemical characteristics could contribute to our understanding of nanotoxicology and underscores the need to consider potential interactions among nanoparticle properties when explaining nanotoxicity.
纳米毒性的作用机制仍然难以捉摸。因此,人们正在努力了解纳米颗粒的特性是否可以解释其毒性。考虑到三种不同类型的有机涂层银纳米颗粒(AgNPs):柠檬酸盐涂层 AgNP、聚乙烯吡咯烷酮涂层 AgNP 和支化聚乙烯亚胺涂层 AgNP,具有不同的表面电荷情况和核心颗粒大小,本文系统地评估了颗粒大小和表面电荷对三种类型 AgNPs 对两种模式生物(大肠杆菌和大型蚤)的毒性的潜在作用。我们发现所有三种类型的 AgNPs 对两种测试生物均具有依赖于颗粒大小、表面电荷和浓度的毒性。值得注意的是,Ag(+)(添加的 AgNO3)的毒性大于测试的每种类型的 AgNPs,其毒性遵循以下趋势:AgNO3 > BPEI-AgNP > 柠檬酸盐-AgNP > PVP-AgNP。使用广义线性模型(GLM)对颗粒特性进行建模,出现了初级颗粒大小和表面电荷的显著相互作用效应,该效应可以非常精确地解释经验衍生的急性毒性。该模型解释了大肠杆菌中 99.9%的毒性变化和大型蚤中 99.8%的毒性变化,揭示了所开发的预测三种有机涂层 AgNPs 毒性的回归模型具有良好的可预测性。我们预计,使用 GLM 根据纳米颗粒的物理化学特性来满意地预测毒性,可以帮助我们理解纳米毒理学,并强调在解释纳米毒性时需要考虑纳米颗粒特性之间的潜在相互作用。