Suppr超能文献

LC-LSTM框架在自尊不稳定案例中的应用。

An application of the LC-LSTM framework to the self-esteem instability case.

作者信息

Alessandri Guido, Vecchione Michele, Donnellan Brent M, Tisak John

机构信息

Psychology Department, "Sapienza", University of Rome, Via dei Marsi 78, 00185, Rome, Italy,

出版信息

Psychometrika. 2013 Oct;78(4):769-92. doi: 10.1007/s11336-013-9326-4. Epub 2013 Mar 1.

Abstract

The present research evaluates the stability of self-esteem as assessed by a daily version of the Rosenberg (Society and the adolescent self-image, Princeton University Press, Princeton, 1965) general self-esteem scale (RGSE). The scale was administered to 391 undergraduates for five consecutive days. The longitudinal data were analyzed using the integrated LC-LSTM framework that allowed us to evaluate: (1) the measurement invariance of the RGSE, (2) its stability and change across the 5-day assessment period, (3) the amount of variance attributable to stable and transitory latent factors, and (4) the criterion-related validity of these factors. Results provided evidence for measurement invariance, mean-level stability, and rank-order stability of daily self-esteem. Latent state-trait analyses revealed that variances in scores of the RGSE can be decomposed into six components: stable self-esteem (40 %), ephemeral (or temporal-state) variance (36 %), stable negative method variance (9 %), stable positive method variance (4 %), specific variance (1 %) and random error variance (10 %). Moreover, latent factors associated with daily self-esteem were associated with measures of depression, implicit self-esteem, and grade point average.

摘要

本研究评估了通过罗森伯格(《社会与青少年自我形象》,普林斯顿大学出版社,普林斯顿,1965年)一般自尊量表(RGSE)的每日版本所评估的自尊稳定性。该量表连续五天施测于391名本科生。使用综合的LC-LSTM框架对纵向数据进行分析,这使我们能够评估:(1)RGSE的测量不变性,(2)其在5天评估期内的稳定性和变化,(3)可归因于稳定和短暂潜在因素的方差量,以及(4)这些因素与标准相关的效度。结果为每日自尊的测量不变性、平均水平稳定性和等级顺序稳定性提供了证据。潜在状态-特质分析表明,RGSE得分的方差可分解为六个成分:稳定自尊(40%)、短暂(或时间状态)方差(36%)、稳定负性方法方差(9%)、稳定正性方法方差(4%)、特定方差(1%)和随机误差方差(10%)。此外,与每日自尊相关的潜在因素与抑郁、内隐自尊和平均绩点的测量相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验