Suppr超能文献

用于同时进行手腕/手部运动分类的表面肌电图和肌内肌电图模式识别比较

Comparison of surface and intramuscular EMG pattern recognition for simultaneous wrist/hand motion classification.

作者信息

Smith Lauren H, Hargrove Levi J

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4223-6. doi: 10.1109/EMBC.2013.6610477.

Abstract

The simultaneous control of multiple degrees of freedom (DOFs) is important for the intuitive, life-like control of artificial limbs. The objective of this study was to determine whether the use of intramuscular electromyogram (EMG) improved pattern classification of simultaneous wrist/hand movements compared to surface EMG. Two pattern classification methods were used in this analysis, and were trained to predict 1-DOF and 2-DOF movements involving wrist rotation, wrist flexion/extension, and hand open/close. The classification methods used were (1) a single pattern classifier discriminating between 1-DOF and 2-DOF motion classes, and (2) a parallel set of three classifiers to predict the activity of each of the 3 DOFs. We demonstrate that in this combined wrist/hand classification task, the use of intramuscular EMG significantly decreases classification error compared to surface EMG for the parallel configuration (p<0.01), but not for the single classifier. We also show that the use of intramuscular EMG mitigates the increase in errors produced when the parallel classifier method is trained without 2-DOF motion class data.

摘要

同时控制多个自由度(DOF)对于直观、逼真地控制假肢至关重要。本研究的目的是确定与表面肌电图相比,使用肌内肌电图(EMG)是否能改善同时进行的手腕/手部运动的模式分类。本分析使用了两种模式分类方法,并对其进行训练以预测涉及手腕旋转、手腕屈伸和手部开合的单自由度和双自由度运动。所使用的分类方法为:(1)区分单自由度和双自由度运动类别的单一模式分类器;(2)用于预测三个自由度中每个自由度活动的一组并行的三个分类器。我们证明,在这个组合的手腕/手部分类任务中,与表面肌电图相比,对于并行配置,使用肌内肌电图可显著降低分类误差(p<0.01),但对于单一分类器则不然。我们还表明,当并行分类器方法在没有双自由度运动类数据的情况下进行训练时,使用肌内肌电图可减轻产生的误差增加。

相似文献

1
Comparison of surface and intramuscular EMG pattern recognition for simultaneous wrist/hand motion classification.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4223-6. doi: 10.1109/EMBC.2013.6610477.
2
A parallel classification strategy to simultaneous control elbow, wrist, and hand movements.
J Neuroeng Rehabil. 2022 Jan 28;19(1):10. doi: 10.1186/s12984-022-00982-z.
3
Real-time simultaneous and proportional myoelectric control using intramuscular EMG.
J Neural Eng. 2014 Dec;11(6):066013. doi: 10.1088/1741-2560/11/6/066013. Epub 2014 Nov 14.
4
Classification of simultaneous movements using surface EMG pattern recognition.
IEEE Trans Biomed Eng. 2013 May;60(5):1250-8. doi: 10.1109/TBME.2012.2232293. Epub 2012 Dec 10.
5
Two degrees of freedom, dynamic, hand-wrist EMG-force using a minimum number of electrodes.
J Electromyogr Kinesiol. 2019 Aug;47:10-18. doi: 10.1016/j.jelekin.2019.04.003. Epub 2019 Apr 16.
6
Multichannel surface EMG based estimation of bilateral hand kinematics during movements at multiple degrees of freedom.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:6066-9. doi: 10.1109/IEMBS.2010.5627622.
7
Surface EMG pattern recognition for real-time control of a wrist exoskeleton.
Biomed Eng Online. 2010 Aug 26;9:41. doi: 10.1186/1475-925X-9-41.
8
Optimizing pattern recognition-based control for partial-hand prosthesis application.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3574-7. doi: 10.1109/EMBC.2014.6944395.
10
Resolving the effect of wrist position on myoelectric pattern recognition control.
J Neuroeng Rehabil. 2017 May 4;14(1):39. doi: 10.1186/s12984-017-0246-x.

引用本文的文献

1
Comparing implantable epimysial and intramuscular electrodes for prosthetic control.
Front Neurosci. 2025 Jun 16;19:1568212. doi: 10.3389/fnins.2025.1568212. eCollection 2025.
2
Smile analysis in dentistry and orthodontics - a review.
J R Soc N Z. 2024 Feb 19;55(1):192-205. doi: 10.1080/03036758.2024.2316226. eCollection 2025.
3
New insights into muscle activity associated with phantom hand movements in transhumeral amputees.
Front Hum Neurosci. 2024 Aug 30;18:1443833. doi: 10.3389/fnhum.2024.1443833. eCollection 2024.
4
Functional assessment of current upper limb prostheses: An integrated clinical and technological perspective.
PLoS One. 2023 Aug 16;18(8):e0289978. doi: 10.1371/journal.pone.0289978. eCollection 2023.
6
Quantifying Dysfunction of the Lumbar Multifidus Muscle After Radiofrequency Neurotomy and Fusion Surgery: A Preliminary Study.
J Eng Sci Med Diagn Ther. 2020 Nov 1;3(4):041001. doi: 10.1115/1.4047651. Epub 2020 Jul 13.
8
Pattern Recognition of EMG Signals by Machine Learning for the Control of a Manipulator Robot.
Sensors (Basel). 2022 Apr 30;22(9):3424. doi: 10.3390/s22093424.
9
A parallel classification strategy to simultaneous control elbow, wrist, and hand movements.
J Neuroeng Rehabil. 2022 Jan 28;19(1):10. doi: 10.1186/s12984-022-00982-z.

本文引用的文献

1
Classification of simultaneous movements using surface EMG pattern recognition.
IEEE Trans Biomed Eng. 2013 May;60(5):1250-8. doi: 10.1109/TBME.2012.2232293. Epub 2012 Dec 10.
2
Simultaneous and proportional force estimation in multiple degrees of freedom from intramuscular EMG.
IEEE Trans Biomed Eng. 2012 Jul;59(7):1804-7. doi: 10.1109/TBME.2012.2197210. Epub 2012 May 2.
3
A comparison of proportional control methods for pattern recognition control.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3354-7. doi: 10.1109/IEMBS.2011.6090909.
5
Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors.
IEEE Trans Neural Syst Rehabil Eng. 2010 Aug;18(4):424-32. doi: 10.1109/TNSRE.2010.2047590. Epub 2010 Apr 8.
6
Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording.
IEEE Trans Biomed Eng. 2009 Jan;56(1):159-71. doi: 10.1109/TBME.2008.2005942.
9
A comparison of surface and intramuscular myoelectric signal classification.
IEEE Trans Biomed Eng. 2007 May;54(5):847-53. doi: 10.1109/TBME.2006.889192.
10
A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses.
IEEE Trans Biomed Eng. 2005 Nov;52(11):1801-11. doi: 10.1109/TBME.2005.856295.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验