Smith Lauren H, Hargrove Levi J
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4223-6. doi: 10.1109/EMBC.2013.6610477.
The simultaneous control of multiple degrees of freedom (DOFs) is important for the intuitive, life-like control of artificial limbs. The objective of this study was to determine whether the use of intramuscular electromyogram (EMG) improved pattern classification of simultaneous wrist/hand movements compared to surface EMG. Two pattern classification methods were used in this analysis, and were trained to predict 1-DOF and 2-DOF movements involving wrist rotation, wrist flexion/extension, and hand open/close. The classification methods used were (1) a single pattern classifier discriminating between 1-DOF and 2-DOF motion classes, and (2) a parallel set of three classifiers to predict the activity of each of the 3 DOFs. We demonstrate that in this combined wrist/hand classification task, the use of intramuscular EMG significantly decreases classification error compared to surface EMG for the parallel configuration (p<0.01), but not for the single classifier. We also show that the use of intramuscular EMG mitigates the increase in errors produced when the parallel classifier method is trained without 2-DOF motion class data.
同时控制多个自由度(DOF)对于直观、逼真地控制假肢至关重要。本研究的目的是确定与表面肌电图相比,使用肌内肌电图(EMG)是否能改善同时进行的手腕/手部运动的模式分类。本分析使用了两种模式分类方法,并对其进行训练以预测涉及手腕旋转、手腕屈伸和手部开合的单自由度和双自由度运动。所使用的分类方法为:(1)区分单自由度和双自由度运动类别的单一模式分类器;(2)用于预测三个自由度中每个自由度活动的一组并行的三个分类器。我们证明,在这个组合的手腕/手部分类任务中,与表面肌电图相比,对于并行配置,使用肌内肌电图可显著降低分类误差(p<0.01),但对于单一分类器则不然。我们还表明,当并行分类器方法在没有双自由度运动类数据的情况下进行训练时,使用肌内肌电图可减轻产生的误差增加。