Suppr超能文献

用于从双相情感障碍患者睡眠心率中进行智能特征提取的决策树。

Decision tree for smart feature extraction from sleep HR in bipolar patients.

作者信息

Migliorini Matteo, Mariani Sara, Bianchi Anna M

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5033-6. doi: 10.1109/EMBC.2013.6610679.

Abstract

The aim of this work is the creation of a completely automatic method for the extraction of informative parameters from peripheral signals recorded through a sensorized T-shirt. The acquired data belong to patients affected from bipolar disorder, and consist of RR series, body movements and activity type. The extracted features, i.e. linear and non-linear HRV parameters in the time domain, HRV parameters in the frequency domain, and parameters indicative of the sleep quality, profile and fragmentation, are of interest for the automatic classification of the clinical mood state. The analysis of this dataset, which is to be performed online and automatically, must address the problems related to the clinical protocol, which also includes a segment of recording in which the patient is awake, and to the nature of the device, which can be sensitive to movements and misplacement. Thus, the decision tree implemented in this study performs the detection and isolation of the sleep period, the elimination of corrupted recording segments and the checking of the minimum requirements of the signals for every parameter to be calculated.

摘要

这项工作的目的是创建一种完全自动化的方法,用于从通过装有传感器的T恤记录的外周信号中提取信息参数。采集的数据来自双相情感障碍患者,包括RR序列、身体运动和活动类型。提取的特征,即时域中的线性和非线性心率变异性(HRV)参数、频域中的HRV参数以及指示睡眠质量、睡眠特征和睡眠片段化的参数,对于临床情绪状态的自动分类具有重要意义。对该数据集的分析将在线自动进行,必须解决与临床方案相关的问题(临床方案还包括患者清醒时的一段记录)以及设备的特性问题(该设备可能对运动和位置不当敏感)。因此,本研究中实现的决策树执行睡眠时段的检测和隔离、损坏记录段的消除以及对每个要计算的参数的信号最低要求的检查。

相似文献

1
Decision tree for smart feature extraction from sleep HR in bipolar patients.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5033-6. doi: 10.1109/EMBC.2013.6610679.
2
Clinical state assessment in bipolar patients by means of HRV features obtained with a sensorized T-shirt.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2240-3. doi: 10.1109/EMBC.2012.6346408.
3
Can home-monitoring of sleep predict depressive episodes in bipolar patients?
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:2215-8. doi: 10.1109/EMBC.2015.7318831.
5
Automatic detection of sleep macrostructure based on a sensorized T-shirt.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3606-9. doi: 10.1109/IEMBS.2010.5627432.
6
Study of Heart Rate Variability in Bipolar Disorder: Linear and Non-Linear Parameters during Sleep.
Front Neuroeng. 2012 Jan 10;4:22. doi: 10.3389/fneng.2011.00022. eCollection 2011.
7
Processing of signals recorded through smart devices: sleep-quality assessment.
IEEE Trans Inf Technol Biomed. 2010 May;14(3):741-7. doi: 10.1109/TITB.2010.2049025. Epub 2010 Apr 26.
8
Mood recognition in bipolar patients through the PSYCHE platform: preliminary evaluations and perspectives.
Artif Intell Med. 2013 Jan;57(1):49-58. doi: 10.1016/j.artmed.2012.12.001. Epub 2013 Jan 16.
9
10
Automatic detection of overnight deep sleep based on heart rate variability: a preliminary study.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:50-3. doi: 10.1109/EMBC.2014.6943526.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验