Suppr超能文献

结合有和无检测限的标志物。

Combining markers with and without the limit of detection.

机构信息

Department of Statistics, George Mason University, Fairfax, VA 22030, U.S.A.

出版信息

Stat Med. 2014 Apr 15;33(8):1307-20. doi: 10.1002/sim.6027. Epub 2013 Oct 17.

Abstract

In this paper, we consider the combination of markers with and without the limit of detection (LOD). LOD is often encountered when measuring proteomic markers. Because of the limited detecting ability of an equipment or instrument, it is difficult to measure markers at a relatively low level. Suppose that after some monotonic transformation, the marker values approximately follow multivariate normal distributions. We propose to estimate distribution parameters while taking the LOD into account, and then combine markers using the results from the linear discriminant analysis. Our simulation results show that the ROC curve parameter estimates generated from the proposed method are much closer to the truth than simply using the linear discriminant analysis to combine markers without considering the LOD. In addition, we propose a procedure to select and combine a subset of markers when many candidate markers are available. The procedure based on the correlation among markers is different from a common understanding that a subset of the most accurate markers should be selected for the combination. The simulation studies show that the accuracy of a combined marker can be largely impacted by the correlation of marker measurements. Our methods are applied to a protein pathway dataset to combine proteomic biomarkers to distinguish cancer patients from non-cancer patients.

摘要

在本文中,我们考虑了具有和不具有检测限(LOD)的标记物的组合。在测量蛋白质组学标记物时经常会遇到 LOD。由于设备或仪器的检测能力有限,因此很难测量相对较低水平的标记物。假设经过一些单调变换后,标记值大致遵循多元正态分布。我们建议在考虑 LOD 的情况下估计分布参数,然后使用线性判别分析的结果来组合标记物。我们的仿真结果表明,与不考虑 LOD 而简单地使用线性判别分析来组合标记物相比,从所提出的方法生成的 ROC 曲线参数估计值更接近真实值。此外,当有许多候选标记物时,我们提出了一种选择和组合标记子集的程序。该程序基于标记物之间的相关性,与通常的理解不同,即应选择最准确的标记子集进行组合。仿真研究表明,组合标记物的准确性可能会受到标记物测量相关性的很大影响。我们的方法应用于蛋白质途径数据集,以结合蛋白质组生物标志物来区分癌症患者和非癌症患者。

相似文献

1
Combining markers with and without the limit of detection.
Stat Med. 2014 Apr 15;33(8):1307-20. doi: 10.1002/sim.6027. Epub 2013 Oct 17.
2
An additive selection of markers to improve diagnostic accuracy based on a discriminatory measure.
Acad Radiol. 2013 Jul;20(7):854-62. doi: 10.1016/j.acra.2013.02.009. Epub 2013 Apr 20.
3
Predictive inference for best linear combination of biomarkers subject to limits of detection.
Stat Med. 2017 Aug 15;36(18):2844-2874. doi: 10.1002/sim.7317. Epub 2017 May 28.
4
Estimation of smooth ROC curves for biomarkers with limits of detection.
Stat Med. 2017 Oct 30;36(24):3830-3843. doi: 10.1002/sim.7394. Epub 2017 Aug 7.
5
Classification using longitudinal trajectory of biomarker in the presence of detection limits.
Stat Methods Med Res. 2016 Feb;25(1):458-71. doi: 10.1177/0962280212460438. Epub 2012 Oct 14.
7
A novel detection method of non-small cell lung cancer using multiplexed bead-based serum biomarker profiling.
J Thorac Cardiovasc Surg. 2012 Feb;143(2):421-7. doi: 10.1016/j.jtcvs.2011.10.046. Epub 2011 Nov 20.
8
Combining biomarkers for classification with covariate adjustment.
Stat Med. 2017 Jul 10;36(15):2347-2362. doi: 10.1002/sim.7274. Epub 2017 Mar 9.
10
Bootstrap-based testing approaches for the assessment of the diagnostic accuracy of biomarkers subject to a limit of detection.
Stat Methods Med Res. 2019 May;28(5):1564-1578. doi: 10.1177/0962280218769334. Epub 2018 Apr 11.

引用本文的文献

1
Determination of Tumor Marker Screening for Lung Cancer Using ROC Curves.
Dis Markers. 2024 Mar 21;2024:4782618. doi: 10.1155/2024/4782618. eCollection 2024.
2
A resample-replace lasso procedure for combining high-dimensional markers with limit of detection.
J Appl Stat. 2021 Sep 22;49(16):4278-4293. doi: 10.1080/02664763.2021.1977785. eCollection 2022.
3
Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers.
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10202-10207. doi: 10.1073/pnas.1704961114. Epub 2017 Sep 5.
4
Sufficient dimension reduction for censored predictors.
Biometrics. 2017 Mar;73(1):220-231. doi: 10.1111/biom.12556. Epub 2016 Aug 9.

本文引用的文献

1
Combining multiple biomarker models in logistic regression.
Biometrics. 2008 Jun;64(2):431-9. doi: 10.1111/j.1541-0420.2007.00904.x. Epub 2008 Mar 5.
2
Maximum likelihood ratio tests for comparing the discriminatory ability of biomarkers subject to limit of detection.
Biometrics. 2008 Sep;64(3):895-903. doi: 10.1111/j.1541-0420.2007.00941.x. Epub 2007 Nov 19.
3
Receiver operating characteristic curve inference from a sample with a limit of detection.
Am J Epidemiol. 2007 Feb 1;165(3):325-33. doi: 10.1093/aje/kwk011. Epub 2006 Nov 16.
4
On linear combinations of biomarkers to improve diagnostic accuracy.
Stat Med. 2005 Jan 15;24(1):37-47. doi: 10.1002/sim.1922.
5
Clinical proteomics: Applications for prostate cancer biomarker discovery and detection.
Urol Oncol. 2004 Jul-Aug;22(4):322-8. doi: 10.1016/j.urolonc.2004.04.011.
6
Combining diagnostic test results to increase accuracy.
Biostatistics. 2000 Jun;1(2):123-40. doi: 10.1093/biostatistics/1.2.123.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验