Institute of Human Genetics, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique, 141 rue de la Cardonille, 34396 Montpellier, France.
Nat Rev Genet. 2013 Nov;14(11):794-806. doi: 10.1038/nrg3573.
During meiosis, a programmed induction of DNA double-strand breaks (DSBs) leads to the exchange of genetic material between homologous chromosomes. These exchanges increase genome diversity and are essential for proper chromosome segregation at the first meiotic division. Recent findings have highlighted an unexpected molecular control of the distribution of meiotic DSBs in mammals by a rapidly evolving gene, PR domain-containing 9 (PRDM9), and genome-wide analyses have facilitated the characterization of meiotic DSB sites at unprecedented resolution. In addition, the identification of new players in DSB repair processes has allowed the delineation of recombination pathways that have two major outcomes, crossovers and non-crossovers, which have distinct mechanistic roles and consequences for genome evolution.
在减数分裂过程中,DNA 双链断裂(DSBs)的程序性诱导导致同源染色体之间遗传物质的交换。这些交换增加了基因组的多样性,是第一次减数分裂中正确染色体分离所必需的。最近的发现强调了一个意想不到的分子控制,即由快速进化的基因 PR 结构域包含 9 (PRDM9)对哺乳动物减数分裂 DSB 的分布进行调控,全基因组分析促进了前所未有的分辨率下对减数分裂 DSB 位点的特征描述。此外,在 DSB 修复过程中鉴定新的参与者,使得可以区分两种主要结果的重组途径,即交叉和非交叉,它们具有不同的机制作用和对基因组进化的影响。