Suppr超能文献

甘蔗木质素的形成:生化特性、基因发现及两种木质素含量差异基因型的表达分析。

Lignification in sugarcane: biochemical characterization, gene discovery, and expression analysis in two genotypes contrasting for lignin content.

机构信息

Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970 Campinas, São Paulo, Brazil.

出版信息

Plant Physiol. 2013 Dec;163(4):1539-57. doi: 10.1104/pp.113.225250. Epub 2013 Oct 21.

Abstract

Sugarcane (Saccharum spp.) is currently one of the most efficient crops in the production of first-generation biofuels. However, the bagasse represents an additional abundant lignocellulosic resource that has the potential to increase the ethanol production per plant. To achieve a more efficient conversion of bagasse into ethanol, a better understanding of the main factors affecting biomass recalcitrance is needed. Because several studies have shown a negative effect of lignin on saccharification yield, the characterization of lignin biosynthesis, structure, and deposition in sugarcane is an important goal. Here, we present, to our knowledge, the first systematic study of lignin deposition during sugarcane stem development, using histological, biochemical, and transcriptional data derived from two sugarcane genotypes with contrasting lignin contents. Lignin amount and composition were determined in rind (outer) and pith (inner) tissues throughout stem development. In addition, the phenolic metabolome was analyzed by ultra-high-performance liquid chromatography-mass spectrometry, which allowed the identification of 35 compounds related to the phenylpropanoid pathway and monolignol biosynthesis. Furthermore, the Sugarcane EST Database was extensively surveyed to identify lignin biosynthetic gene homologs, and the expression of all identified genes during stem development was determined by quantitative reverse transcription-polymerase chain reaction. Our data provide, to our knowledge, the first in-depth characterization of lignin biosynthesis in sugarcane and form the baseline for the rational metabolic engineering of sugarcane feedstock for bioenergy purposes.

摘要

甘蔗(Saccharum spp.)是生产第一代生物燃料最有效的作物之一。然而,蔗渣是另一种丰富的木质纤维素资源,有可能提高每株植物的乙醇产量。为了更有效地将蔗渣转化为乙醇,需要更好地了解影响生物质抗降解性的主要因素。由于几项研究表明木质素对糖化产率有负面影响,因此,甘蔗中木质素生物合成、结构和沉积的特性是一个重要目标。在这里,我们展示了,据我们所知,首次对甘蔗茎发育过程中木质素沉积进行的系统研究,使用了来自两个木质素含量不同的甘蔗基因型的组织学、生化和转录数据。在整个茎发育过程中,测定了皮(外)和髓(内)组织中的木质素含量和组成。此外,通过超高效液相色谱-质谱法分析了酚类代谢组,鉴定出与苯丙烷途径和单体生物合成相关的 35 种化合物。此外,还广泛调查了甘蔗 EST 数据库,以鉴定木质素生物合成基因同源物,并通过定量逆转录聚合酶链反应确定所有鉴定基因在茎发育过程中的表达。我们的数据提供了,据我们所知,甘蔗中木质素生物合成的首次深入表征,并为基于代谢工程的生物能源目的对甘蔗原料进行合理的代谢工程提供了基础。

相似文献

2
Identification of genes from the general phenylpropanoid and monolignol-specific metabolism in two sugarcane lignin-contrasting genotypes.
Mol Genet Genomics. 2020 May;295(3):717-739. doi: 10.1007/s00438-020-01653-1. Epub 2020 Mar 2.
3
Association of gene expression with syringyl to guaiacyl ratio in sugarcane lignin.
Plant Mol Biol. 2021 May;106(1-2):173-192. doi: 10.1007/s11103-021-01136-w. Epub 2021 Mar 18.
4
Molecular Cloning, Characterization, and Expression Analysis of Lignin Genes from Sugarcane Genotypes Varying in Lignin Content.
Appl Biochem Biotechnol. 2017 Apr;181(4):1270-1282. doi: 10.1007/s12010-016-2283-5. Epub 2016 Oct 19.
5
Large-Scale Transcriptome Analysis of Two Sugarcane Genotypes Contrasting for Lignin Content.
PLoS One. 2015 Aug 4;10(8):e0134909. doi: 10.1371/journal.pone.0134909. eCollection 2015.
6
Water stress alters lignin content and related gene expression in two sugarcane genotypes.
J Agric Food Chem. 2015 May 20;63(19):4708-20. doi: 10.1021/jf5061858. Epub 2015 May 12.
7
Genome-wide analysis of general phenylpropanoid and monolignol-specific metabolism genes in sugarcane.
Funct Integr Genomics. 2021 Jan;21(1):73-99. doi: 10.1007/s10142-020-00762-9. Epub 2021 Jan 6.
8
RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass.
Plant Biotechnol J. 2012 Dec;10(9):1067-76. doi: 10.1111/j.1467-7652.2012.00734.x. Epub 2012 Aug 24.

引用本文的文献

1
overexpression increases syringyl lignin and improves saccharification in sugarcane leaves.
GM Crops Food. 2024 Dec 31;15(1):67-84. doi: 10.1080/21645698.2024.2325181. Epub 2024 Mar 20.
2
Silencing ScGUX2 reduces xylan glucuronidation and improves biomass saccharification in sugarcane.
Plant Biotechnol J. 2024 Mar;22(3):587-601. doi: 10.1111/pbi.14207. Epub 2023 Dec 25.
3
Regioselective stilbene O-methylations in Saccharinae grasses.
Nat Commun. 2023 Jun 12;14(1):3462. doi: 10.1038/s41467-023-38908-5.
4
Mass Spectrometry-Based Investigation of Sugarcane Exposed to Five Different Pesticides.
Life (Basel). 2023 Apr 17;13(4):1034. doi: 10.3390/life13041034.
5
A short review on sugarcane: its domestication, molecular manipulations and future perspectives.
Genet Resour Crop Evol. 2022;69(8):2623-2643. doi: 10.1007/s10722-022-01430-6. Epub 2022 Sep 16.
6
Genetic Determinants of Biomass in C Crops: Molecular and Agronomic Approaches to Increase Biomass for Biofuels.
Front Plant Sci. 2022 Jun 23;13:839588. doi: 10.3389/fpls.2022.839588. eCollection 2022.
7
Visualization of Suberization and Lignification in Sugarcane.
Methods Mol Biol. 2022;2469:89-102. doi: 10.1007/978-1-0716-2185-1_8.
8
Transcriptome changes in the developing sugarcane culm associated with high yield and early-season high sugar content.
Theor Appl Genet. 2022 May;135(5):1619-1636. doi: 10.1007/s00122-022-04058-3. Epub 2022 Feb 27.

本文引用的文献

1
Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis.
Science. 2013 Sep 6;341(6150):1103-6. doi: 10.1126/science.1241602. Epub 2013 Aug 15.
2
Towards a carbon-negative sustainable bio-based economy.
Front Plant Sci. 2013 Jun 3;4:174. doi: 10.3389/fpls.2013.00174. eCollection 2013.
5
Suspension cell culture as a tool for the characterization of class III peroxidases in sugarcane.
Plant Physiol Biochem. 2013 Jan;62:1-10. doi: 10.1016/j.plaphy.2012.10.015. Epub 2012 Nov 6.
6
RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass.
Plant Biotechnol J. 2012 Dec;10(9):1067-76. doi: 10.1111/j.1467-7652.2012.00734.x. Epub 2012 Aug 24.
8
Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods.
J Agric Food Chem. 2012 Jun 13;60(23):5922-35. doi: 10.1021/jf301002n. Epub 2012 Jun 1.
9
Enzymatic activity and proteomic profile of class III peroxidases during sugarcane stem development.
Plant Physiol Biochem. 2012 Jun;55:66-76. doi: 10.1016/j.plaphy.2012.03.014. Epub 2012 Apr 3.
10
Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis.
Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1554-9. doi: 10.1073/pnas.1121134109. Epub 2012 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验