Suppr超能文献

基于现场的生物监测仪多变量监测设备的可靠性和有效性研究。

Field based reliability and validity of the bioharness™ multivariable monitoring device.

机构信息

Sport, Health and Exercise Research Group, School of Life and Medical Sciences, University of Hertfordshire , UK.

出版信息

J Sports Sci Med. 2012 Dec 1;11(4):643-52. eCollection 2012.

Abstract

The Bioharness™ device is designed for monitoring physiological variables in free-living situations but has only been proven to be reliable and valid in a laboratory environment. Therefore, this study aimed to determine the reliability and validity of the Bioharness™ using a field based protocol. Twenty healthy males participated. Heart rate (HR), breathing frequency (BF) and accelerometry (ACC) were assessed by simultaneous measurement of two Bioharness™ devices and a test-retest of a discontinuous incremental walk-jog-run protocol (4 - 11 km·h(-1)) completed in a sports hall. Adopted precision of measurement devices were; HR: Polar T31 (Polar Electro), BF: Spirometer (Cortex Metalyser), ACC: Oxygen expenditure (Cortex Metalyser). For all data, precision of measurement reported good relationships (r = 0.61 to 0.67, p < 0.01) and large Limits of Agreement for HR (>79.2 b·min(-1)) and BF (>54.7 br·min(-1)). ACC presented excellent precision (r = 0.94, p < 0.01). Results for HR (r= ~0.91, p < 0.01: CV <7.6) and ACC (r > 0.97, p < 0.01; CV <14.7) suggested these variables are reliable. BF presented more variable data (r = 0.46-0.61, p < 0.01; CV < 23.7). As velocity of movement increased (>8 km·h(-1)) data became more erroneous. A data cleaning protocol removed gross errors in the data analysis and subsequent reliability and validity statistics improved across all variables. In conclusion, the Bioharness™ HR and ACC variables have demonstrated reliability and validity in a field setting, though data collected at higher velocities should be treated with caution. Measuring human physiological responses in a field based environment allows for more ecologically valid data to be collected and devices such as the Bioharness™ could be used by exercise professionals to begin to further investigate this area.

摘要

Bioharness™ 设备旨在监测自由生活环境中的生理变量,但仅在实验室环境中被证明是可靠和有效的。因此,本研究旨在使用基于现场的方案确定 Bioharness™ 的可靠性和有效性。二十名健康男性参与了研究。心率 (HR)、呼吸频率 (BF) 和加速度计 (ACC) 通过同时测量两个 Bioharness™ 设备以及在体育馆中进行的不连续递增走-跑-跑测试(4-11 km·h(-1))来评估。采用的测量设备的精度为:HR:Polar T31(Polar Electro),BF:Spirometer(Cortex Metalyser),ACC:耗氧量(Cortex Metalyser)。对于所有数据,测量设备的精度都报告了良好的关系(r = 0.61 至 0.67,p < 0.01)和较大的 HR (>79.2 b·min(-1)) 和 BF (>54.7 br·min(-1)) 的协议差异。ACC 表现出优异的精度(r = 0.94,p < 0.01)。HR(r=~0.91,p < 0.01:CV <7.6)和 ACC(r > 0.97,p < 0.01;CV <14.7)的结果表明这些变量是可靠的。BF 呈现出更可变的数据(r = 0.46-0.61,p < 0.01;CV <23.7)。随着运动速度的增加(>8 km·h(-1)),数据变得更加错误。数据分析中的数据清理协议消除了明显的错误,随后所有变量的可靠性和有效性统计数据都得到了改善。总之,Bioharness™ HR 和 ACC 变量在现场环境中表现出可靠性和有效性,尽管在较高速度下收集的数据应谨慎处理。在基于现场的环境中测量人体生理反应可以收集更具生态有效性的数据,并且像 Bioharness™ 这样的设备可以被运动专业人员用于开始进一步研究这一领域。

相似文献

1
Field based reliability and validity of the bioharness™ multivariable monitoring device.
J Sports Sci Med. 2012 Dec 1;11(4):643-52. eCollection 2012.
2
Bioharness(™) multivariable monitoring device: part. I: validity.
J Sports Sci Med. 2012 Sep 1;11(3):400-8. eCollection 2012.
3
Bioharness(™) Multivariable Monitoring Device: Part. II: Reliability.
J Sports Sci Med. 2012 Sep 1;11(3):409-17. eCollection 2012.
4
Reliability and validity of a novel Kinect-based software program for measuring posture, balance and side-bending.
BMC Musculoskelet Disord. 2018 Jan 8;19(1):6. doi: 10.1186/s12891-017-1927-0.
6
Validity and Reliability of the PUSH Wearable Device to Measure Movement Velocity During the Back Squat Exercise.
J Strength Cond Res. 2016 Jul;30(7):1968-74. doi: 10.1519/JSC.0000000000001284.
9
Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports.
PLoS One. 2018 Feb 8;13(2):e0192708. doi: 10.1371/journal.pone.0192708. eCollection 2018.

引用本文的文献

1
Objective and subjective evaluation of a passive low-back exoskeleton during simulated logistics tasks.
Wearable Technol. 2023 Sep 19;4:e24. doi: 10.1017/wtc.2023.19. eCollection 2023.
2
An ML-Based Approach to Reconstruct Heart Rate from PPG in Presence of Motion Artifacts.
Biosensors (Basel). 2023 Jul 7;13(7):718. doi: 10.3390/bios13070718.
3
Field based assessment of a tri-axial accelerometers validity to identify steps and reliability to quantify external load.
Front Physiol. 2022 Sep 12;13:942954. doi: 10.3389/fphys.2022.942954. eCollection 2022.
5
Remote Cardiac Rhythm Monitoring in the Era of Smart Wearables: Present Assets and Future Perspectives.
Front Cardiovasc Med. 2022 Mar 1;9:853614. doi: 10.3389/fcvm.2022.853614. eCollection 2022.
6
The Effects Aerobic Fitness has on Heart Rate Responses for a Custody Assistant Recruit Class Performing a Formation Run.
Int J Exerc Sci. 2021 Oct 1;14(4):1219-1233. doi: 10.70252/VUXW8399. eCollection 2021.
7
Real-Time Quality Index to Control Data Loss in Real-Life Cardiac Monitoring Applications.
Sensors (Basel). 2021 Aug 9;21(16):5357. doi: 10.3390/s21165357.
9
The Effect of Sports Rules Amendments on Exercise Intensity during Taekwondo-Specific Workouts.
Int J Environ Res Public Health. 2020 Sep 17;17(18):6779. doi: 10.3390/ijerph17186779.

本文引用的文献

1
Heart Rate Monitors: Validity, Stability, and Functionality.
Phys Sportsmed. 1988 May;16(5):143-51. doi: 10.1080/00913847.1988.11709511.
2
Bioharness(™) Multivariable Monitoring Device: Part. II: Reliability.
J Sports Sci Med. 2012 Sep 1;11(3):409-17. eCollection 2012.
3
Bioharness(™) multivariable monitoring device: part. I: validity.
J Sports Sci Med. 2012 Sep 1;11(3):400-8. eCollection 2012.
4
Heart monitoring garments using textile electrodes for healthcare applications.
J Med Syst. 2011 Apr;35(2):189-201. doi: 10.1007/s10916-009-9356-8. Epub 2009 Aug 11.
5
The validity of wireless iButtons and thermistors for human skin temperature measurement.
Physiol Meas. 2010 Jan;31(1):95-114. doi: 10.1088/0967-3334/31/1/007. Epub 2009 Nov 26.
6
Validity and reliability of cardiorespiratory measurements recorded by the LifeShirt during exercise tests.
Respir Physiol Neurobiol. 2009 Jun 30;167(2):162-7. doi: 10.1016/j.resp.2009.03.013. Epub 2009 Apr 8.
7
Equivalence of accelerometer data for walking and running: treadmill versus on land.
J Sports Sci. 2009 May;27(7):669-75. doi: 10.1080/02640410802680580.
8
Choose your primary outcome variables with care.
J Sports Sci. 2009 Feb 15;27(4):313-4. doi: 10.1080/02640410902719197.
9
Sports-science roundtable: does sports-science research influence practice?
Int J Sports Physiol Perform. 2006 Jun;1(2):161-8. doi: 10.1123/ijspp.1.2.161.
10
Progressive statistics for studies in sports medicine and exercise science.
Med Sci Sports Exerc. 2009 Jan;41(1):3-13. doi: 10.1249/MSS.0b013e31818cb278.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验