Suppr超能文献

从显微图像中自动识别藻类群落。

Automatic identification of algal community from microscopic images.

作者信息

Santhi Natchimuthu, Pradeepa Chinnaraj, Subashini Parthasarathy, Kalaiselvi Senthil

机构信息

Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India.

出版信息

Bioinform Biol Insights. 2013 Oct 10;7:327-34. doi: 10.4137/BBI.S12844. eCollection 2013.

Abstract

A good understanding of the population dynamics of algal communities is crucial in several ecological and pollution studies of freshwater and oceanic systems. This paper reviews the subsequent introduction to the automatic identification of the algal communities using image processing techniques from microscope images. The diverse techniques of image preprocessing, segmentation, feature extraction and recognition are considered one by one and their parameters are summarized. Automatic identification and classification of algal community are very difficult due to various factors such as change in size and shape with climatic changes, various growth periods, and the presence of other microbes. Therefore, the significance, uniqueness, and various approaches are discussed and the analyses in image processing methods are evaluated. Algal identification and associated problems in water organisms have been projected as challenges in image processing application. Various image processing approaches based on textures, shapes, and an object boundary, as well as some segmentation methods like, edge detection and color segmentations, are highlighted. Finally, artificial neural networks and some machine learning algorithms were used to classify and identifying the algae. Further, some of the benefits and drawbacks of schemes are examined.

摘要

深入了解藻类群落的种群动态对于淡水和海洋系统的多项生态及污染研究至关重要。本文回顾了随后使用显微镜图像的图像处理技术对藻类群落进行自动识别的相关内容。逐一探讨了图像预处理、分割、特征提取和识别等多种技术,并总结了其参数。由于诸如随气候变化的大小和形状变化、不同生长阶段以及其他微生物的存在等各种因素,藻类群落的自动识别和分类非常困难。因此,讨论了其重要性、独特性和各种方法,并对图像处理方法的分析进行了评估。藻类识别及水生生物中的相关问题已被视为图像处理应用中的挑战。重点介绍了基于纹理、形状和物体边界的各种图像处理方法,以及一些分割方法,如边缘检测和颜色分割。最后,使用人工神经网络和一些机器学习算法对藻类进行分类和识别。此外,还研究了这些方案的一些优缺点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e609/3798295/44ff3dea8659/bbi-7-2013-327f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验