Suppr超能文献

使用多细胞微流控系统控制可灌注微血管网络形态。

Control of perfusable microvascular network morphology using a multiculture microfluidic system.

作者信息

Whisler Jordan A, Chen Michelle B, Kamm Roger D

机构信息

1 Department of Mechanical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts.

出版信息

Tissue Eng Part C Methods. 2014 Jul;20(7):543-52. doi: 10.1089/ten.TEC.2013.0370. Epub 2013 Dec 13.

Abstract

The mechanical and biochemical microenvironment influences the morphological characteristics of microvascular networks (MVNs) formed by endothelial cells (ECs) undergoing the process of vasculogenesis. The objective of this study was to quantify the role of individual factors in determining key network parameters in an effort to construct a set of design principles for engineering vascular networks with prescribed morphologies. To achieve this goal, we developed a multiculture microfluidic platform enabling precise control over paracrine signaling, cell-seeding densities, and hydrogel mechanical properties. Human umbilical vein endothelial cells (HUVECs) were seeded in fibrin gels and cultured alongside human lung fibroblasts (HLFs). The engineered vessels formed in our device contained patent, perfusable lumens. Communication between the two cell types was found to be critical in avoiding network regression and maintaining stable morphology beyond 4 days. The number of branches, average branch length, percent vascularized area, and average vessel diameter were found to depend uniquely on several input parameters. Importantly, multiple inputs were found to control any given output network parameter. For example, the vessel diameter can be decreased either by applying angiogenic growth factors--vascular endothelial growth factor (VEGF) and sphingosine-1-phsophate (S1P)--or by increasing the fibrinogen concentration in the hydrogel. These findings introduce control into the design of MVNs with specified morphological properties for tissue-specific engineering applications.

摘要

机械和生化微环境会影响经历血管生成过程的内皮细胞(EC)形成的微血管网络(MVN)的形态特征。本研究的目的是量化各个因素在确定关键网络参数方面的作用,以便构建一套设计原则,用于设计具有特定形态的工程化血管网络。为实现这一目标,我们开发了一种多细胞微流控平台,能够精确控制旁分泌信号、细胞接种密度和水凝胶的机械性能。将人脐静脉内皮细胞(HUVEC)接种在纤维蛋白凝胶中,并与人肺成纤维细胞(HLF)一起培养。我们装置中形成的工程血管包含有功能的、可灌注的管腔。发现两种细胞类型之间的通讯对于避免网络退化和在4天以上维持稳定形态至关重要。发现分支数量、平均分支长度、血管化面积百分比和平均血管直径仅取决于几个输入参数。重要的是,发现多个输入可控制任何给定的输出网络参数。例如,可通过应用血管生成生长因子——血管内皮生长因子(VEGF)和1-磷酸鞘氨醇(S1P)——或通过增加水凝胶中的纤维蛋白原浓度来减小血管直径。这些发现为具有特定形态特性的MVN设计引入了可控性,可用于组织特异性工程应用。

相似文献

1
Control of perfusable microvascular network morphology using a multiculture microfluidic system.
Tissue Eng Part C Methods. 2014 Jul;20(7):543-52. doi: 10.1089/ten.TEC.2013.0370. Epub 2013 Dec 13.
2
Perfused 3D angiogenic sprouting in a high-throughput in vitro platform.
Angiogenesis. 2019 Feb;22(1):157-165. doi: 10.1007/s10456-018-9647-0. Epub 2018 Aug 31.
3
Comparison of organ-specific endothelial cells in terms of microvascular formation and endothelial barrier functions.
Microvasc Res. 2019 Mar;122:60-70. doi: 10.1016/j.mvr.2018.11.007. Epub 2018 Nov 22.
4
Primary Human Lung Pericytes Support and Stabilize In Vitro Perfusable Microvessels.
Tissue Eng Part A. 2015 Aug;21(15-16):2166-76. doi: 10.1089/ten.TEA.2014.0545. Epub 2015 May 29.
5
Engineering a Blood Vessel Network Module for Body-on-a-Chip Applications.
J Lab Autom. 2015 Jun;20(3):296-301. doi: 10.1177/2211068214562831. Epub 2014 Dec 22.
6
Hypoxia augments outgrowth endothelial cell (OEC) sprouting and directed migration in response to sphingosine-1-phosphate (S1P).
PLoS One. 2015 Apr 15;10(4):e0123437. doi: 10.1371/journal.pone.0123437. eCollection 2015.
7
Engineering of functional, perfusable 3D microvascular networks on a chip.
Lab Chip. 2013 Apr 21;13(8):1489-500. doi: 10.1039/c3lc41320a.
8
Alginate-Chitosan Hydrogels Provide a Sustained Gradient of Sphingosine-1-Phosphate for Therapeutic Angiogenesis.
Ann Biomed Eng. 2017 Apr;45(4):1003-1014. doi: 10.1007/s10439-016-1768-2. Epub 2016 Nov 30.
9
Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device.
Integr Biol (Camb). 2017 Jun 19;9(6):506-518. doi: 10.1039/c7ib00024c.

引用本文的文献

1
Advanced Brain-on-a-Chip for Wetware Computing: A Review.
Adv Sci (Weinh). 2025 Sep;12(33):e08120. doi: 10.1002/advs.202508120. Epub 2025 Jul 23.
2
Lung cancer intravasation-on-a-chip: Visualization and machine learning-assisted automatic quantification.
Bioact Mater. 2025 Jun 27;51:858-875. doi: 10.1016/j.bioactmat.2025.06.028. eCollection 2025 Sep.
3
Cancer-on-a-chip for precision cancer medicine.
Lab Chip. 2025 May 16. doi: 10.1039/d4lc01043d.
5
Towards advanced regenerative therapeutics to tackle cardio-cerebrovascular diseases.
Am Heart J Plus. 2025 Mar 1;53:100520. doi: 10.1016/j.ahjo.2025.100520. eCollection 2025 May.
6
A 3D millifluidic model of a dermal perivascular microenvironment on a chip.
Lab Chip. 2025 Jan 28;25(3):423-439. doi: 10.1039/d4lc00898g.
7
A Low-Cost, Open-Source 3D Printer for Multimaterial and High-Throughput Direct Ink Writing of Soft and Living Materials.
Adv Mater. 2025 Mar;37(10):e2414971. doi: 10.1002/adma.202414971. Epub 2025 Jan 2.
8
Adaptable Manufacturing and Biofabrication of Milliscale Organ Chips With Perfusable Vascular Beds.
Biotechnol J. 2024 Dec;19(12):e202400550. doi: 10.1002/biot.202400550.
9
Stochastic to Deterministic: A Straightforward Approach to Create Serially Perfusable Multiscale Capillary Beds.
ACS Biomater Sci Eng. 2025 Jan 13;11(1):239-248. doi: 10.1021/acsbiomaterials.4c01247. Epub 2024 Nov 28.
10
Engineering Granular Hydrogels without Interparticle Cross-Linking to Support Multicellular Organization.
ACS Biomater Sci Eng. 2024 Dec 9;10(12):7594-7605. doi: 10.1021/acsbiomaterials.4c01563. Epub 2024 Nov 25.

本文引用的文献

2
Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos.
PLoS One. 2013 Oct 11;8(10):e75060. doi: 10.1371/journal.pone.0075060. eCollection 2013.
3
Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac.
Development. 2013 Oct;140(19):4041-50. doi: 10.1242/dev.096255. Epub 2013 Sep 4.
4
Mechanisms of tumor cell extravasation in an in vitro microvascular network platform.
Integr Biol (Camb). 2013 Oct;5(10):1262-71. doi: 10.1039/c3ib40149a.
5
Engineering of functional, perfusable 3D microvascular networks on a chip.
Lab Chip. 2013 Apr 21;13(8):1489-500. doi: 10.1039/c3lc41320a.
6
In vitro perfused human capillary networks.
Tissue Eng Part C Methods. 2013 Sep;19(9):730-7. doi: 10.1089/ten.TEC.2012.0430. Epub 2013 Feb 21.
7
Engineering of in vitro 3D capillary beds by self-directed angiogenic sprouting.
PLoS One. 2012;7(12):e50582. doi: 10.1371/journal.pone.0050582. Epub 2012 Dec 4.
8
Dynamic adaption of vascular morphology.
Front Physiol. 2012 Oct 2;3:390. doi: 10.3389/fphys.2012.00390. eCollection 2012.
9
Pattern formation during vasculogenesis.
Birth Defects Res C Embryo Today. 2012 Jun;96(2):153-62. doi: 10.1002/bdrc.21010.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验