Suppr超能文献

将复制缺陷型腺病毒载体转变为具有复制能力的溶瘤腺病毒。

Switching a replication-defective adenoviral vector into a replication-competent, oncolytic adenovirus.

作者信息

Nakashima Hiroshi, Chiocca E Antonio

机构信息

Harvey Cushing Neuro-oncology Laboratories, Harvard Institutes of Medicine, Department of Neurosurgery and Institute for the Neurosciences at the Brigham, Brigham and Women's/Faulkner Hospital and Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.

出版信息

J Virol. 2014 Jan;88(1):345-53. doi: 10.1128/JVI.02668-13. Epub 2013 Oct 23.

Abstract

The adenovirus immediate early gene E1A initiates the program of viral gene transcription and reprograms multiple aspects of cell function and behavior. For adenoviral (Ad) vector-mediated gene transfer and therapy approaches, where replication-defective (RD) gene transfer is required, E1A has thus been the primary target for deletions. For oncolytic gene therapy for cancer, where replication-competent (RC) Ad viral gene expression is needed, E1A has been either mutated or placed under tumor-specific transcriptional control. A novel Ad vector that initially infected target tumor cells in an RD manner for transgene expression but that could be "switched" into an RC, oncolytic state when needed might represent an advance in vector technology. Here, we report that we designed such an Ad vector (proAdΔ24.GFP), where initial Ad replication is silenced by a green fluorescent protein (GFP) transgene that blocks cytomegalovirus (CMV)-mediated transcription of E1A. This vector functions as a bona fide E1A-deleted RD vector in infected tumor cells. However, because the silencing GFP transgene is flanked by FLP recombination target (FRT) sites, we show that it can be efficiently excised by Flp recombinase site-specific recombination, either when Flp is expressed constitutively in cells or when it is provided in trans by coinfection with a second RD herpes simplex virus (HSV) amplicon vector. This switches the RD Ad, proAdΔ24.GFP, into a fully RC, oncolytic Ad (rAdΔ24) that lyses tumor cells in culture and generates oncolytic progeny virions. In vivo, coinfection of established flank tumors with the RD proAdΔ24.GFP and the RD Flp-bearing HSV1 amplicon leads to generation of RC, oncolytic rAdΔ24. In an orthotopic human glioma xenograft tumor model, coinjection of the RD proAdΔ24.GFP and the RD Flp-bearing HSV1 amplicon also led to a significant increase in animal survival, compared to controls. Therefore, Flp-FRT site-specific recombination can be applied to switch RD Ad into fully oncolytic RC Ad for tumor therapy and is potentially applicable to a variety of gene therapy approaches.

摘要

腺病毒立即早期基因E1A启动病毒基因转录程序,并对细胞功能和行为的多个方面进行重新编程。对于腺病毒(Ad)载体介导的基因转移和治疗方法,由于需要复制缺陷型(RD)基因转移,因此E1A一直是缺失的主要靶点。对于癌症的溶瘤基因治疗,由于需要有复制能力(RC)的Ad病毒基因表达,E1A要么发生突变,要么置于肿瘤特异性转录控制之下。一种新型的Ad载体,最初以RD方式感染靶肿瘤细胞以进行转基因表达,但在需要时可以“切换”到RC溶瘤状态,这可能代表了载体技术的进步。在此,我们报告我们设计了这样一种Ad载体(proAdΔ24.GFP),其中初始Ad复制通过绿色荧光蛋白(GFP)转基因沉默,该转基因阻断巨细胞病毒(CMV)介导的E1A转录。该载体在感染的肿瘤细胞中作为真正的缺失E1A的RD载体发挥作用。然而,由于沉默的GFP转基因两侧是FLP重组靶点(FRT)位点,我们表明,当Flp在细胞中组成性表达或通过与第二种RD单纯疱疹病毒(HSV)扩增子载体共感染而反式提供时,它可以被Flp重组酶位点特异性重组有效切除。这将RD Ad,proAdΔ24.GFP转换为完全RC溶瘤Ad(rAdΔ24),其在培养中裂解肿瘤细胞并产生溶瘤子代病毒颗粒。在体内,将RD proAdΔ24.GFP与携带RD Flp的HSV1扩增子共感染已建立的侧腹肿瘤,导致产生RC溶瘤rAdΔ24。在原位人类胶质瘤异种移植肿瘤模型中,与对照相比,共注射RD proAdΔ24.GFP和携带RD Flp的HSV1扩增子也导致动物存活率显著提高。因此,Flp-FRT位点特异性重组可用于将RD Ad转换为完全溶瘤的RC Ad用于肿瘤治疗,并且可能适用于多种基因治疗方法。

相似文献

1
Switching a replication-defective adenoviral vector into a replication-competent, oncolytic adenovirus.
J Virol. 2014 Jan;88(1):345-53. doi: 10.1128/JVI.02668-13. Epub 2013 Oct 23.
4
Dissecting the roles of E1A and E1B in adenoviral replication and RCAd-enhanced RDAd transduction efficacy on tumor cells.
Cancer Biol Ther. 2014 Oct;15(10):1358-66. doi: 10.4161/cbt.29842. Epub 2014 Jul 14.
5
Construction of a novel oncolytic adenoviral vector and its biological characteristics.
Oncol Rep. 2013 Feb;29(2):798-804. doi: 10.3892/or.2012.2140. Epub 2012 Nov 15.
6
Combination of oncolytic adenovirus and endostatin inhibits human retinoblastoma in an in vivo mouse model.
Int J Mol Med. 2013 Feb;31(2):377-85. doi: 10.3892/ijmm.2012.1197. Epub 2012 Nov 29.
10
A simplified system for generating oncolytic adenovirus vector carrying one or two transgenes.
Cancer Gene Ther. 2008 Mar;15(3):173-82. doi: 10.1038/sj.cgt.7701105. Epub 2007 Dec 21.

引用本文的文献

1
The emerging field of oncolytic virus-based cancer immunotherapy.
Trends Cancer. 2023 Feb;9(2):122-139. doi: 10.1016/j.trecan.2022.10.003. Epub 2022 Nov 17.
2
Oncolytic viruses: overcoming translational challenges.
J Clin Invest. 2019 Mar 4;129(4):1407-1418. doi: 10.1172/JCI122287.
6
Glioma virus therapies between bench and bedside.
Neuro Oncol. 2014 Mar;16(3):334-51. doi: 10.1093/neuonc/not310. Epub 2014 Jan 26.

本文引用的文献

1
Gene therapy with helper-dependent adenoviral vectors: current advances and future perspectives.
Viruses. 2010 Sep;2(9):1886-1917. doi: 10.3390/v2091886. Epub 2010 Sep 3.
3
Cytotoxic immunotherapy strategies for cancer: mechanisms and clinical development.
J Cell Biochem. 2011 Aug;112(8):1969-77. doi: 10.1002/jcb.23126.
6
Directing systemic oncolytic viral delivery to tumors via carrier cells.
Cytokine Growth Factor Rev. 2010 Apr-Jun;21(2-3):119-26. doi: 10.1016/j.cytogfr.2010.02.004. Epub 2010 Mar 11.
7
Oncolytic (replication-competent) adenoviruses as anticancer agents.
Expert Opin Biol Ther. 2010 Mar;10(3):353-68. doi: 10.1517/14712590903559822.
8
Engineering microRNA responsiveness to decrease virus pathogenicity.
Nat Med. 2008 Nov;14(11):1278-83. doi: 10.1038/nm.1776. Epub 2008 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验