1Department of Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA. 2Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA. 3Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA. 4Statistical Analysis and Measurement Consultants, Inc., Lanexa, VA. 5Department of Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA. 6Department of Emergency Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA.
Crit Care Med. 2014 Mar;42(3):664-74. doi: 10.1097/01.ccm.0000435668.53188.80.
Morbidity and mortality in children with cardiac arrest largely result from neurologic injury. Serum biomarkers of brain injury can potentially measure injury to neurons (neuron-specific enolase), astrocytes (S100b), and axons (myelin basic protein). We hypothesized that serum biomarkers can be used to classify outcome from pediatric cardiac arrest.
Prospective observational study.
Single tertiary pediatric hospital.
Forty-three children with cardiac arrest.
None.
We measured serum neuron-specific enolase, S100b, and myelin basic protein on days 1-4 and 7 after cardiac arrest. We recorded demographics, details of the cardiac arrest and resuscitation, and Pediatric Cerebral Performance Category at hospital discharge and 6 months. We analyzed the association of biomarker levels at 24, 48, and 72 hours with favorable (Pediatric Cerebral Performance Category 1-3) or unfavorable (Pediatric Cerebral Performance Category 4-6) outcome and mortality. Forty-three children (49% female; mean age of 5.9 ± 6.3) were enrolled and 17 (40%) died. Serum S100b concentrations peaked earliest, followed by neuron-specific enolase and finally myelin basic protein. Serum neuron-specific enolase and S100b concentrations were increased in the unfavorable versus favorable outcome group and in subjects who died at all time points (all p < 0.05). Serum myelin basic protein at 24 and 72 hours correctly classified survival but not good versus poor outcome. Using best specificity, serum S100b and neuron-specific enolase had optimal positive and negative predictive values at 24 hours to classify both favorable versus unfavorable outcome and survival, whereas serum myelin basic protein's best accuracy occurred at 48 hours. Receiver operator curves for serum S100b and neuron-specific enolase to classify favorable versus unfavorable outcome at 6 months were superior to clinical variables.
Preliminary data show that serum S100b, neuron-specific enolase, and myelin basic protein may aid in outcome classification of children surviving cardiac arrest.
儿童心搏骤停的发病率和死亡率主要源于神经损伤。脑损伤的血清生物标志物可以潜在地测量神经元(神经元特异性烯醇化酶)、星形胶质细胞(S100b)和轴突(髓鞘碱性蛋白)的损伤。我们假设血清生物标志物可用于分类儿科心搏骤停的预后。
前瞻性观察性研究。
单中心三级儿科医院。
43 例心搏骤停患儿。
无。
我们在心搏骤停后 1-4 天和 7 天测量血清神经元特异性烯醇化酶、S100b 和髓鞘碱性蛋白。我们记录了人口统计学、心搏骤停和复苏的详细情况以及出院时和 6 个月时的小儿脑功能分类。我们分析了 24、48 和 72 小时时的生物标志物水平与良好(小儿脑功能分类 1-3)或不良(小儿脑功能分类 4-6)预后和死亡率的关系。共纳入 43 例患儿(49%为女性;平均年龄为 5.9±6.3 岁),其中 17 例(40%)死亡。血清 S100b 浓度最早达到峰值,其次是神经元特异性烯醇化酶,最后是髓鞘碱性蛋白。在预后不良组和所有时间点死亡的患者中,血清神经元特异性烯醇化酶和 S100b 浓度均升高(均 P<0.05)。在 24 小时和 72 小时时,血清髓鞘碱性蛋白可正确分类生存情况,但不能正确分类良好预后和不良预后。使用最佳特异性,血清 S100b 和神经元特异性烯醇化酶在 24 小时时对分类良好预后和不良预后以及生存均具有最佳的阳性和阴性预测值,而血清髓鞘碱性蛋白的最佳准确性出现在 48 小时时。在 6 个月时,血清 S100b 和神经元特异性烯醇化酶用于分类良好预后和不良预后的受试者工作特征曲线优于临床变量。
初步数据表明,血清 S100b、神经元特异性烯醇化酶和髓鞘碱性蛋白可能有助于分类儿童心搏骤停后的预后。