Laboratory of Bacteriology, The Rockefeller University, New York, New York, USA.
J Bacteriol. 2014 Jan;196(2):310-7. doi: 10.1128/JB.01130-13. Epub 2013 Nov 1.
Many prokaryotes possess an adaptive immune system encoded by clustered regularly interspaced short palindromic repeats (CRISPRs). CRISPR loci produce small guide RNAs (crRNAs) that, in conjunction with flanking CRISPR-associated (cas) genes, combat viruses and block plasmid transfer by an antisense targeting mechanism. CRISPR-Cas systems have been classified into three types (I to III) that employ distinct mechanisms of crRNA biogenesis and targeting. The type III-A system in Staphylococcus epidermidis RP62a blocks the transfer of staphylococcal conjugative plasmids and harbors nine cas-csm genes. Previous biochemical analysis indicated that Cas10, Csm2, Csm3, Csm4, and Csm5 form a crRNA-containing ribonucleoprotein complex; however, the roles of these genes toward antiplasmid targeting remain unknown. Here, we determined the cas-csm genes that are required for antiplasmid immunity and used genetic and biochemical analyses to investigate the functions of predicted motifs and domains within these genes. We found that many mutations affected immunity by impacting the formation of the Cas10-Csm complex or crRNA biogenesis. Surprisingly, mutations in the predicted nuclease domains of the members of the Cas10-Csm complex had no detectable effect on antiplasmid immunity or crRNA biogenesis. In contrast, the deletion of csm6 and mutations in the cas10 Palm polymerase domain prevented CRISPR immunity without affecting either complex formation or crRNA production, suggesting their involvement in target destruction. By delineating the genetic requirements of this system, our findings further contribute to the mechanistic understanding of type III CRISPR-Cas systems.
许多原核生物拥有一种适应性免疫系统,该系统由成簇的、规律间隔的短回文重复序列(CRISPRs)编码。CRISPR 基因座产生小的引导 RNA(crRNA),与侧翼的 CRISPR 相关(cas)基因一起,通过反义靶向机制抵抗病毒并阻断质粒转移。CRISPR-Cas 系统已被分为三种类型(I 型到 III 型),它们采用不同的 crRNA 生物发生和靶向机制。表皮葡萄球菌 RP62a 的 III-A 型系统阻断了葡萄球菌接合质粒的转移,并拥有九个 cas-csm 基因。以前的生化分析表明,Cas10、Csm2、Csm3、Csm4 和 Csm5 形成了一个含有 crRNA 的核糖核蛋白复合物;然而,这些基因在抗质粒靶向中的作用仍不清楚。在这里,我们确定了 cas-csm 基因,这些基因是抗质粒免疫所必需的,并利用遗传和生化分析来研究这些基因中预测的模体和结构域的功能。我们发现,许多突变通过影响 Cas10-Csm 复合物的形成或 crRNA 生物发生而影响免疫。令人惊讶的是,Cas10-Csm 复合物成员的预测核酸酶结构域中的突变对抗质粒免疫或 crRNA 生物发生没有可检测的影响。相比之下,csm6 的缺失和 cas10 Palm 聚合酶结构域的突变阻止了 CRISPR 免疫,而不影响复合物形成或 crRNA 产生,这表明它们参与了靶标破坏。通过描绘这个系统的遗传要求,我们的发现进一步促进了对 III 型 CRISPR-Cas 系统的机制理解。