Suppr超能文献

通过 III-A 型 CRISPR-Cas 系统对质体免疫进行遗传特征分析。

Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system.

机构信息

Laboratory of Bacteriology, The Rockefeller University, New York, New York, USA.

出版信息

J Bacteriol. 2014 Jan;196(2):310-7. doi: 10.1128/JB.01130-13. Epub 2013 Nov 1.

Abstract

Many prokaryotes possess an adaptive immune system encoded by clustered regularly interspaced short palindromic repeats (CRISPRs). CRISPR loci produce small guide RNAs (crRNAs) that, in conjunction with flanking CRISPR-associated (cas) genes, combat viruses and block plasmid transfer by an antisense targeting mechanism. CRISPR-Cas systems have been classified into three types (I to III) that employ distinct mechanisms of crRNA biogenesis and targeting. The type III-A system in Staphylococcus epidermidis RP62a blocks the transfer of staphylococcal conjugative plasmids and harbors nine cas-csm genes. Previous biochemical analysis indicated that Cas10, Csm2, Csm3, Csm4, and Csm5 form a crRNA-containing ribonucleoprotein complex; however, the roles of these genes toward antiplasmid targeting remain unknown. Here, we determined the cas-csm genes that are required for antiplasmid immunity and used genetic and biochemical analyses to investigate the functions of predicted motifs and domains within these genes. We found that many mutations affected immunity by impacting the formation of the Cas10-Csm complex or crRNA biogenesis. Surprisingly, mutations in the predicted nuclease domains of the members of the Cas10-Csm complex had no detectable effect on antiplasmid immunity or crRNA biogenesis. In contrast, the deletion of csm6 and mutations in the cas10 Palm polymerase domain prevented CRISPR immunity without affecting either complex formation or crRNA production, suggesting their involvement in target destruction. By delineating the genetic requirements of this system, our findings further contribute to the mechanistic understanding of type III CRISPR-Cas systems.

摘要

许多原核生物拥有一种适应性免疫系统,该系统由成簇的、规律间隔的短回文重复序列(CRISPRs)编码。CRISPR 基因座产生小的引导 RNA(crRNA),与侧翼的 CRISPR 相关(cas)基因一起,通过反义靶向机制抵抗病毒并阻断质粒转移。CRISPR-Cas 系统已被分为三种类型(I 型到 III 型),它们采用不同的 crRNA 生物发生和靶向机制。表皮葡萄球菌 RP62a 的 III-A 型系统阻断了葡萄球菌接合质粒的转移,并拥有九个 cas-csm 基因。以前的生化分析表明,Cas10、Csm2、Csm3、Csm4 和 Csm5 形成了一个含有 crRNA 的核糖核蛋白复合物;然而,这些基因在抗质粒靶向中的作用仍不清楚。在这里,我们确定了 cas-csm 基因,这些基因是抗质粒免疫所必需的,并利用遗传和生化分析来研究这些基因中预测的模体和结构域的功能。我们发现,许多突变通过影响 Cas10-Csm 复合物的形成或 crRNA 生物发生而影响免疫。令人惊讶的是,Cas10-Csm 复合物成员的预测核酸酶结构域中的突变对抗质粒免疫或 crRNA 生物发生没有可检测的影响。相比之下,csm6 的缺失和 cas10 Palm 聚合酶结构域的突变阻止了 CRISPR 免疫,而不影响复合物形成或 crRNA 产生,这表明它们参与了靶标破坏。通过描绘这个系统的遗传要求,我们的发现进一步促进了对 III 型 CRISPR-Cas 系统的机制理解。

相似文献

1
Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system.
J Bacteriol. 2014 Jan;196(2):310-7. doi: 10.1128/JB.01130-13. Epub 2013 Nov 1.
2
Crystal Structures of Csm2 and Csm3 in the Type III-A CRISPR-Cas Effector Complex.
J Mol Biol. 2019 Feb 15;431(4):748-763. doi: 10.1016/j.jmb.2019.01.009. Epub 2019 Jan 11.
3
A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs.
J Biol Chem. 2013 Sep 27;288(39):27888-97. doi: 10.1074/jbc.M113.499244. Epub 2013 Aug 9.
4
Molecular determinants for CRISPR RNA maturation in the Cas10-Csm complex and roles for non-Cas nucleases.
Nucleic Acids Res. 2017 Feb 28;45(4):2112-2123. doi: 10.1093/nar/gkw891.
5
The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems.
RNA Biol. 2019 Apr;16(4):449-460. doi: 10.1080/15476286.2018.1493334. Epub 2018 Aug 1.
6
Genetic Dissection of the Type III-A CRISPR-Cas System Csm Complex Reveals Roles of Individual Subunits.
Cell Rep. 2019 Mar 5;26(10):2753-2765.e4. doi: 10.1016/j.celrep.2019.02.029.
7
Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR-Cas immunity.
Nat Microbiol. 2019 Apr;4(4):656-662. doi: 10.1038/s41564-018-0353-x. Epub 2019 Jan 28.
8
Regulation of cyclic oligoadenylate synthesis by the Cas10-Csm complex.
RNA. 2019 Aug;25(8):948-962. doi: 10.1261/rna.070417.119. Epub 2019 May 10.
9
In vitro assembly of thermostable Csm complex in CRISPR-Cas type III/A system.
Methods Enzymol. 2019;616:173-189. doi: 10.1016/bs.mie.2018.10.025. Epub 2019 Jan 12.
10
Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity.
Cell. 2015 May 21;161(5):1164-1174. doi: 10.1016/j.cell.2015.04.027. Epub 2015 May 7.

引用本文的文献

2
3
CRISPR-Cas Systems: A Functional Perspective and Innovations.
Int J Mol Sci. 2025 Apr 12;26(8):3645. doi: 10.3390/ijms26083645.
5
AcrIIIA1 is a protein-RNA anti-CRISPR complex that targets core Cas and accessory nucleases.
Nucleic Acids Res. 2024 Dec 11;52(22):13490-13514. doi: 10.1093/nar/gkae1006.
7
Nucleotide Immune Signaling in CBASS, Pycsar, Thoeris, and CRISPR Antiphage Defense.
Annu Rev Microbiol. 2024 Nov;78(1):255-276. doi: 10.1146/annurev-micro-041222-024843. Epub 2024 Nov 7.
9
RNA processing by the CRISPR-associated NYN ribonuclease.
Biochem J. 2024 Jun 19;481(12):793-804. doi: 10.1042/BCJ20240151.
10
Genetic Engineering of Therapeutic Phages Using Type III CRISPR-Cas Systems.
Methods Mol Biol. 2024;2734:279-299. doi: 10.1007/978-1-0716-3523-0_18.

本文引用的文献

1
A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs.
J Biol Chem. 2013 Sep 27;288(39):27888-97. doi: 10.1074/jbc.M113.499244. Epub 2013 Aug 9.
2
CRISPR interference: a structural perspective.
Biochem J. 2013 Jul 15;453(2):155-66. doi: 10.1042/BJ20130316.
4
CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.
RNA Biol. 2013 May;10(5):679-86. doi: 10.4161/rna.24022. Epub 2013 Feb 25.
5
Molecular biology. A Swiss army knife of immunity.
Science. 2012 Aug 17;337(6096):808-9. doi: 10.1126/science.1227253.
6
Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system.
Structure. 2012 Sep 5;20(9):1574-84. doi: 10.1016/j.str.2012.06.016. Epub 2012 Jul 26.
8
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.
Science. 2012 Aug 17;337(6096):816-21. doi: 10.1126/science.1225829. Epub 2012 Jun 28.
9
CRISPR interference directs strand specific spacer acquisition.
PLoS One. 2012;7(4):e35888. doi: 10.1371/journal.pone.0035888. Epub 2012 Apr 27.
10
CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3.
Mol Cell. 2012 Jun 8;46(5):595-605. doi: 10.1016/j.molcel.2012.03.018. Epub 2012 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验