Suppr超能文献

The induction and modification of voltage-sensitive responses in cat neocortical neurons by N-methyl-D-aspartate.

作者信息

Flatman J A, Schwindt P C, Crill W E

出版信息

Brain Res. 1986 Jan 15;363(1):62-77. doi: 10.1016/0006-8993(86)90659-1.

Abstract

The actions of the excitatory amino acid, N-methyl-D-aspartate (NMDA), on layer V neurons of cat sensorimotor cortex were examined in an in vitro slice preparation using current clamp, single electrode voltage clamp (SEVC), and ionic substitution techniques. Low doses of NMDA evoked a slow depolarization with a net decrease of input conductance. Larger doses additionally evoked repetitive firing, rhythmic depolarization shifts (DSs), low-threshold calcium spikes (in the presence of TEA+) and bistable membrane potential behavior. Ionic substitution experiments suggested that entry of both Ca2+ and Na+ ions contributed to the NMDA responses. Attention was focused on the NMDA response with Ca2+ entry blocked. Examination by SEVC revealed that, in both normal cells and in the presence of several blocking agents, NMDA induced a highly voltage-dependent inward ionic current which could result in a region of negative slope conductance on the cell's current-voltage relation. The development of this current seems capable of accounting for all aspects of the observed response, including the DSs and low-threshold Ca2+ spikes. Substitution of TEA+ for most external Na+ (with Ca2+ entry blocked) largely eliminated the NMDA responses and corresponding ionic current. Our results in neocortical neurons are compared to those recently obtained in cultured murine neurons.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验