Suppr超能文献

分子置换坐标误差的改进估计

Improved estimates of coordinate error for molecular replacement.

作者信息

Oeffner Robert D, Bunkóczi Gábor, McCoy Airlie J, Read Randy J

机构信息

Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, England.

出版信息

Acta Crystallogr D Biol Crystallogr. 2013 Nov;69(Pt 11):2209-15. doi: 10.1107/S0907444913023512. Epub 2013 Oct 12.

Abstract

The estimate of the root-mean-square deviation (r.m.s.d.) in coordinates between the model and the target is an essential parameter for calibrating likelihood functions for molecular replacement (MR). Good estimates of the r.m.s.d. lead to good estimates of the variance term in the likelihood functions, which increases signal to noise and hence success rates in the MR search. Phaser has hitherto used an estimate of the r.m.s.d. that only depends on the sequence identity between the model and target and which was not optimized for the MR likelihood functions. Variance-refinement functionality was added to Phaser to enable determination of the effective r.m.s.d. that optimized the log-likelihood gain (LLG) for a correct MR solution. Variance refinement was subsequently performed on a database of over 21,000 MR problems that sampled a range of sequence identities, protein sizes and protein fold classes. Success was monitored using the translation-function Z-score (TFZ), where a TFZ of 8 or over for the top peak was found to be a reliable indicator that MR had succeeded for these cases with one molecule in the asymmetric unit. Good estimates of the r.m.s.d. are correlated with the sequence identity and the protein size. A new estimate of the r.m.s.d. that uses these two parameters in a function optimized to fit the mean of the refined variance is implemented in Phaser and improves MR outcomes. Perturbing the initial estimate of the r.m.s.d. from the mean of the distribution in steps of standard deviations of the distribution further increases MR success rates.

摘要

模型与目标之间坐标的均方根偏差(r.m.s.d.)估计值是校准分子置换(MR)似然函数的关键参数。对r.m.s.d.的良好估计能得出似然函数中方差项的良好估计值,这会增加信噪比,从而提高MR搜索的成功率。到目前为止,Phaser使用的r.m.s.d.估计值仅取决于模型与目标之间的序列同一性,且未针对MR似然函数进行优化。在Phaser中添加了方差细化功能,以确定能优化正确MR解决方案的对数似然增益(LLG)的有效r.m.s.d.。随后,对一个包含超过21,000个MR问题的数据库进行了方差细化,这些问题涵盖了一系列序列同一性、蛋白质大小和蛋白质折叠类别。使用平移函数Z分数(TFZ)来监测成功率,对于不对称单元中有一个分子的这些情况,发现最高峰的TFZ为8或更高是MR成功的可靠指标。对r.m.s.d.的良好估计与序列同一性和蛋白质大小相关。Phaser中实现了一种新的r.m.s.d.估计值,该估计值在一个经过优化以拟合细化方差均值的函数中使用这两个参数,并改善了MR结果。以分布标准差的步长从分布均值扰动r.m.s.d.的初始估计值可进一步提高MR成功率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1553/3817694/5fc2bafca195/d-69-02209-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验