Shi Lingyan, Zeng Min, Sun Yi, Fu Bingmei M
J Biomech Eng. 2014 Mar;136(3):031005. doi: 10.1115/1.4025892.
Development of an optimal systemic drug delivery strategy to the brain will require noninvasive or minimally invasive methods to quantify the permeability of the cerebral microvessel wall or blood-brain barrier (BBB) to various therapeutic agents and to measure their transport in the brain tissue. To address this problem, we used laser-scanning multiphoton microscopy to determine BBB permeability to solutes (P) and effective solute diffusion coefficients (Deff) in rat brain tissue 100-250 μm below the pia mater. The cerebral microcirculation was observed through a section of frontoparietal bone thinned with a microgrinder. Sodium fluorescein, fluorescein isothiocyanate (FITC)-dextrans, or Alexa Fluor 488-immunoglobulin G (IgG) in 1% bovine serum albumin (BSA) mammalian Ringer's solution was injected into the cerebral circulation via the ipsilateral carotid artery by a syringe pump at a constant rate of ∼3 ml/min. P and Deff were determined from the rate of tissue solute accumulation and the radial concentration gradient around individual microvessels in the brain tissue. The mean apparent permeability P values for sodium fluorescein (molecular weight (MW) 376 Da), dextran-4k, -20k, -40k, -70k, and IgG (MW ∼160 kDa) were 14.6, 6.2, 1.8, 1.4, 1.3, and 0.54 × 10-7 cm/s, respectively. These P values were not significantly different from those of rat pial microvessels for the same-sized solutes (Yuan et al., 2009, "Non-Invasive Measurement of Solute Permeability in Cerebral Microvessels of the Rat," Microvasc. Res., 77(2), pp. 166-73), except for the small solute sodium fluorescein, suggesting that pial microvessels can be a good model for studying BBB transport of relatively large solutes. The mean Deff values were 33.2, 4.4, 1.3, 0.89, 0.59, and 0.47 × 10-7 cm2/s, respectively, for sodium fluorescein, dextran-4k, -20k, -40k, -70k, and IgG. The corresponding mean ratio of Deff to the free diffusion coefficient Dfree, Deff/Dfree, were 0.46, 0.19, 0.12, 0.12, 0.11, and 0.11 for these solutes. While there is a significant difference in Deff/Dfree between small (e.g., sodium fluorescein) and larger solutes, there is no significant difference in Deff/Dfree between solutes with molecular weights from 20,000 to 160,000 Da, suggesting that the relative resistance of the brain tissue to macromolecular solutes is similar over a wide size range. The quantitative transport parameters measured from this study can be used to develop better strategies for brain drug delivery.
要开发出一种向大脑输送药物的最佳全身给药策略,需要采用非侵入性或微创方法来量化脑微血管壁或血脑屏障(BBB)对各种治疗药物的通透性,并测量它们在脑组织中的转运情况。为了解决这个问题,我们使用激光扫描多光子显微镜来测定大鼠软脑膜下100 - 250μm脑组织中血脑屏障对溶质的通透性(P)和有效溶质扩散系数(Deff)。通过用微型研磨器将额顶骨磨薄的切片观察脑微循环。将溶解于1%牛血清白蛋白(BSA)哺乳动物林格氏液中的荧光素钠、异硫氰酸荧光素(FITC) - 葡聚糖或Alexa Fluor 488 - 免疫球蛋白G(IgG),通过注射泵以约3ml/min的恒定速率经同侧颈动脉注入脑循环。根据组织溶质积累速率和脑组织中单个微血管周围的径向浓度梯度来确定P和Deff。荧光素钠(分子量(MW)376Da)、葡聚糖 - 4k、 - 20k、 - 40k、 - 70k和IgG(MW约160kDa)的平均表观通透性P值分别为14.6、6.2、1.8、1.4、1.3和0.54×10 - 7cm/s。除了小分子溶质荧光素钠外,这些P值与相同大小溶质的大鼠软脑膜微血管的P值没有显著差异(Yuan等人,2009年,“大鼠脑微血管中溶质通透性的非侵入性测量”,《微血管研究》,77(2),第166 - 73页),这表明软脑膜微血管可以作为研究相对大分子溶质血脑屏障转运的良好模型。荧光素钠、葡聚糖 - 4k、 - 20k、 - 40k、 - 70k和IgG的平均Deff值分别为33.2、4.4、1.3、0.89、0.59和0.47×10 - 7cm2/s。这些溶质对应的Deff与自由扩散系数Dfree的平均比值Deff/Dfree分别为0.46、0.19、0.12、0.12、0.11和0.11。虽然小分子(如荧光素钠)和大分子溶质之间的Deff/Dfree存在显著差异,但分子量在20,000至160,000Da之间的溶质之间的Deff/Dfree没有显著差异,这表明脑组织对大分子溶质的相对阻力在很宽的尺寸范围内是相似的。本研究中测量的定量转运参数可用于制定更好的脑药物递送策略。