Suppr超能文献

还原氧化石墨烯修饰的 Li2FeSiO4/C 复合材料作为锂离子电池正极材料,具有增强的电化学性能。

Reduced graphene oxide modified Li2FeSiO4/C composite with enhanced electrochemical performance as cathode material for lithium ion batteries.

机构信息

College of Mechanical and Material Engineering, Collaborative Innovation Center for Energy Equipment of Three Gorges Region, Three Gorges University , 8 Daxue Road, Yichang, Hubei 443002, China.

出版信息

ACS Appl Mater Interfaces. 2013 Dec 11;5(23):12304-9. doi: 10.1021/am402434n. Epub 2013 Nov 19.

Abstract

Reduced graphene oxide modified Li2FeSiO4/C (LFS/(C+rGO)) composite is successfully synthesized by a citric-acid-based sol-gel method and evaluated as cathode material for lithium ion batteries. The LFS/(C+rGO) shows an improved electronic conductivity due to the conductive network formed by reduced graphene oxide nanosheets and amorphous carbon in particles. Electrochemical impedance spectroscopy results indicate an increased diffusion coefficient of lithium ions (2.4 × 10(-11) cm(2) s(-1)) for LFS/(C+rGO) electrode. Compared with LFS with only amorphous carbon, the LFS/(C+rGO) electrode exhibits higher capacity and better cycling stability. It delivers a reversible capacity of 178 mAh g(-1) with a capacity retention ratio of 94.5% after 40 cycles at 0.1 C, and an average capacity of 119 mAh g(-1) at 2 C. The improved performance can be contributed to the reduced crystal size, good particle dispersion, and the improved conductive network between LFS particles.

摘要

采用柠檬酸溶胶-凝胶法成功合成了还原氧化石墨烯修饰的 Li2FeSiO4/C(LFS/(C+rGO))复合材料,并将其作为锂离子电池正极材料进行了评估。由于还原氧化石墨烯纳米片和颗粒中无定形碳形成的导电网络,LFS/(C+rGO)表现出了改善的电子电导率。电化学阻抗谱结果表明,LFS/(C+rGO)电极的锂离子扩散系数(2.4×10(-11)cm(2)s(-1))增加。与仅含无定形碳的 LFS 相比,LFS/(C+rGO)电极表现出更高的容量和更好的循环稳定性。在 0.1 C 下循环 40 次后,其可逆容量为 178 mAh g(-1),容量保持率为 94.5%,在 2 C 下的平均容量为 119 mAh g(-1)。性能的提高可归因于 LFS 颗粒的结晶尺寸减小、颗粒分散性良好以及 LFS 颗粒之间的导电网络得到改善。

相似文献

1
Reduced graphene oxide modified Li2FeSiO4/C composite with enhanced electrochemical performance as cathode material for lithium ion batteries.
ACS Appl Mater Interfaces. 2013 Dec 11;5(23):12304-9. doi: 10.1021/am402434n. Epub 2013 Nov 19.
3
Improved Cycle Stability and Rate Capability of Graphene Oxide Wrapped Tavorite LiFeSO₄F as Cathode Material for Lithium-Ion Batteries.
ACS Appl Mater Interfaces. 2015 Jul 1;7(25):13972-9. doi: 10.1021/acsami.5b02966. Epub 2015 Jun 19.
5
Polyaniline-assisted synthesis of Si@C/RGO as anode material for rechargeable lithium-ion batteries.
ACS Appl Mater Interfaces. 2015 Jan 14;7(1):409-14. doi: 10.1021/am506404b. Epub 2014 Dec 22.
7
Improved kinetics of LiNi(1/3)Mn(1/3)Co(1/3)O2 cathode material through reduced graphene oxide networks.
Phys Chem Chem Phys. 2012 Feb 28;14(8):2934-9. doi: 10.1039/c2cp23363k. Epub 2012 Jan 25.
8
CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries.
ACS Appl Mater Interfaces. 2014 Nov 26;6(22):20414-22. doi: 10.1021/am505983m. Epub 2014 Nov 17.
9

引用本文的文献

1
Novel Solid-State Sodium-Ion Battery with Wide Band Gap NaTi(PO) Nanocrystal Electrolyte.
ACS Omega. 2021 Apr 22;6(17):11537-11544. doi: 10.1021/acsomega.1c00664. eCollection 2021 May 4.
2
The Core-Shell Heterostructure CNT@LiFeSiO@C as a Highly Stable Cathode Material for Lithium-Ion Batteries.
Nanoscale Res Lett. 2019 Oct 17;14(1):326. doi: 10.1186/s11671-019-3165-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验