Department of Zoology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
Fish Physiol Biochem. 1993 Jul;11(1-6):313-21. doi: 10.1007/BF00004580.
The trout thyroid secretes L-thyroxine (T4) which undergoes enzymatic deiodination in liver and other tissues. Based on mammalian studies, T4 outer-ring deiodination (ORD) or T4 inner-ring deiodination (IRD) could generate respectively 3,5,3'-triiodo-L-thyronine (T3) or 3,3',5'-T3(rT3), while subsequent T3ORD or T3IRD could generate respectively 3,5-diiodo-L-thyronine (T2) or 3,3'-T2, and rT3ORD or rT3IRD could generate respectively 3,3'-T2 or 3',5'-T2. In practice, T4 in trout undergoes hepatic ORD to produce T3 but negligible IRD to produce rT3, and T3 in turn undergoes negligible ORD but modest IRD to produce 3,3'-T2. T4ORD, which is particularly important in converting T4 to the biologically more potent T3, also occurs in gill, muscle and kidney. At least two isozymes are involved: i) a high-affinity, propylthiouracil (PTU)-sensitive T4ORD which displays ping-pong kinetics, requires thiol as a cofactor, and is present in liver, gill and muscle, and ii) a low-affinity, PTU-insensitive T4ORD with sequential kinetics with a thiol cofactor, and is present in liver and kidney. Receptor-bound T3 is derived primarily from the plasma for kidney, mainly from intracellular sources for gill and about equally from both plasma and intracellular sources for liver. Thus, the high-affinity T4ORD may produce T3 for local intracellular use while the low-affinity 5'-monodeiodinase may produce T3 for systemic use. T4ORD activity responds to nutritional factors and the physiologic state of the fish. Furthermore, T3 administered orally for either 6 weeks or 24h reduces the functional level (Vmax) of hepatic T4ORD, and T3 added to isolated hepatocytes also reduces activity, indicating direct T3 autoregulation of T4ORD to maintain hepatocyte T3 homeostasis. However, T3 administration also induces T4IRD to produce biologically inactive rT3 and induces T3IRD to produce 3,3'-T2. Thus, the trout liver has several iodothyronine deiodinase systems which in a coordinated manner regulate tissue T3 homeostasis in the face of a T3 challenge. It does this by decreasing formation of T3 itself, by diverting T4 substrate to biologically inactive rT3 and by increasing the degradation of T3. These deiodinases differ in many respects from any mammalian counterparts.
鳜鱼的甲状腺分泌 L-甲状腺素(T4),它在肝脏和其他组织中经历酶促脱碘。基于哺乳动物的研究,T4 外环脱碘(ORD)或 T4 内环脱碘(IRD)可以分别产生 3,5,3'-三碘-L-甲状腺素(T3)或 3,3',5'-T3(rT3),而随后的 T3ORD 或 T3IRD 可以分别产生 3,5-二碘-L-甲状腺素(T2)或 3,3'-T2,rT3ORD 或 rT3IRD 可以分别产生 3,3'-T2 或 3',5'-T2。实际上,鳜鱼中的 T4 经历肝 ORD 以产生 T3,但几乎没有 IRD 以产生 rT3,而 T3 又经历几乎没有 ORD 但适度的 IRD 以产生 3,3'-T2。T4ORD 特别重要,因为它将 T4 转化为生物活性更强的 T3,也发生在鳃、肌肉和肾脏中。至少有两种同工酶参与其中:i)一种高亲和力、丙硫氧嘧啶(PTU)敏感的 T4ORD,其表现为乒乓动力学,需要硫醇作为辅助因子,存在于肝脏、鳃和肌肉中,ii)一种低亲和力、PTU 不敏感的 T4ORD,其具有顺序动力学,需要硫醇作为辅助因子,存在于肝脏和肾脏中。与受体结合的 T3 主要来自肾脏的血浆,主要来自鳃的细胞内来源,而来自肝脏的血浆和细胞内来源则大致相等。因此,高亲和力的 T4ORD 可能为局部细胞内使用产生 T3,而低亲和力的 5'-单脱碘酶可能为全身使用产生 T3。T4ORD 活性对营养因素和鱼类的生理状态做出响应。此外,口服给予 T3 6 周或 24 小时会降低肝 T4ORD 的功能水平(Vmax),而添加到分离肝细胞中的 T3 也会降低活性,表明 T3 直接对 T4ORD 进行自身调节以维持肝细胞 T3 内稳态。然而,T3 给药也会诱导 T4IRD 产生生物活性无的 rT3,并诱导 T3IRD 产生 3,3'-T2。因此,鳜鱼肝脏具有几种甲状腺素脱碘酶系统,这些系统以协调的方式在面对 T3 挑战时调节组织 T3 内稳态。它通过减少 T3 自身的形成、将 T4 底物转向生物活性无的 rT3 以及增加 T3 的降解来实现这一点。这些脱碘酶在许多方面与任何哺乳动物对应物都不同。