Suppr超能文献

一种用于解码行波的树突机制:原理及其在运动皮层中的应用。

A dendritic mechanism for decoding traveling waves: principles and applications to motor cortex.

机构信息

School of Psychiatry, The University of New South Wales, Sydney, Australia ; The Black Dog Institute, Sydney, Australia.

出版信息

PLoS Comput Biol. 2013 Oct;9(10):e1003260. doi: 10.1371/journal.pcbi.1003260. Epub 2013 Oct 31.

Abstract

Traveling waves of neuronal oscillations have been observed in many cortical regions, including the motor and sensory cortex. Such waves are often modulated in a task-dependent fashion although their precise functional role remains a matter of debate. Here we conjecture that the cortex can utilize the direction and wavelength of traveling waves to encode information. We present a novel neural mechanism by which such information may be decoded by the spatial arrangement of receptors within the dendritic receptor field. In particular, we show how the density distributions of excitatory and inhibitory receptors can combine to act as a spatial filter of wave patterns. The proposed dendritic mechanism ensures that the neuron selectively responds to specific wave patterns, thus constituting a neural basis of pattern decoding. We validate this proposal in the descending motor system, where we model the large receptor fields of the pyramidal tract neurons - the principle outputs of the motor cortex - decoding motor commands encoded in the direction of traveling wave patterns in motor cortex. We use an existing model of field oscillations in motor cortex to investigate how the topology of the pyramidal cell receptor field acts to tune the cells responses to specific oscillatory wave patterns, even when those patterns are highly degraded. The model replicates key findings of the descending motor system during simple motor tasks, including variable interspike intervals and weak corticospinal coherence. By additionally showing how the nature of the wave patterns can be controlled by modulating the topology of local intra-cortical connections, we hence propose a novel integrated neuronal model of encoding and decoding motor commands.

摘要

在许多皮质区域,包括运动和感觉皮质,已经观察到神经元振荡的行波。尽管它们的确切功能作用仍存在争议,但这种波通常以任务依赖的方式进行调制。在这里,我们推测皮质可以利用行波的方向和波长来编码信息。我们提出了一种新的神经机制,通过这种机制,通过树突状受体场中的受体的空间排列,可以对这种信息进行解码。具体来说,我们展示了兴奋性和抑制性受体的密度分布如何组合起来作为波模式的空间滤波器。所提出的树突机制确保神经元选择性地响应特定的波模式,从而构成模式解码的神经基础。我们在下行运动系统中验证了这一建议,我们在该系统中对锥体束神经元(运动皮质的主要输出)的大受体场进行建模,对运动皮质中行波模式的方向进行解码,从而对运动命令进行编码。我们使用运动皮质中现有的场振荡模型来研究锥体细胞受体场的拓扑结构如何作用于调谐细胞对特定振荡波模式的反应,即使这些模式高度退化。该模型复制了简单运动任务期间下行运动系统的关键发现,包括可变的峰间间隔和弱皮质脊髓相干性。此外,通过展示如何通过调节局部皮质内连接的拓扑结构来控制波模式的性质,我们因此提出了一种新的运动命令编码和解码的整合神经元模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75e5/3814333/f7c9fdede1da/pcbi.1003260.g001.jpg

相似文献

1
A dendritic mechanism for decoding traveling waves: principles and applications to motor cortex.
PLoS Comput Biol. 2013 Oct;9(10):e1003260. doi: 10.1371/journal.pcbi.1003260. Epub 2013 Oct 31.
3
Fast Oscillatory Commands from the Motor Cortex Can Be Decoded by the Spinal Cord for Force Control.
J Neurosci. 2015 Oct 7;35(40):13687-97. doi: 10.1523/JNEUROSCI.1950-15.2015.
4
Phase reorganization leads to transient β-LFP spatial wave patterns in motor cortex during steady-state movement preparation.
J Neurophysiol. 2018 Jun 1;119(6):2212-2228. doi: 10.1152/jn.00525.2017. Epub 2018 Feb 14.
5
A model of TMS-induced I-waves in motor cortex.
Brain Stimul. 2014 May-Jun;7(3):401-14. doi: 10.1016/j.brs.2014.02.009. Epub 2014 Feb 28.
6
Cortical circuits for motor control.
Neuropsychopharmacology. 2011 Jan;36(1):365-6. doi: 10.1038/npp.2010.146.
7
Optimizing computer models of corticospinal neurons to replicate in vitro dynamics.
J Neurophysiol. 2017 Jan 1;117(1):148-162. doi: 10.1152/jn.00570.2016. Epub 2016 Oct 19.
8
Decorrelation of cortical inputs and motoneuron output.
J Neurophysiol. 2011 Nov;106(5):2688-97. doi: 10.1152/jn.00336.2011. Epub 2011 Jul 27.
9
Morphological Characterization of a Cortico-cortical relay in the cat sensorimotor cortex.
Cereb Cortex. 1997 Mar;7(2):100-9. doi: 10.1093/cercor/7.2.100.

引用本文的文献

1
Modulation of motor excitability reflects traveling waves of neural oscillations.
Cell Rep. 2025 Jun 24;44(6):115864. doi: 10.1016/j.celrep.2025.115864. Epub 2025 Jun 14.
2
The functional role of oscillatory dynamics in neocortical circuits: A computational perspective.
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2412830122. doi: 10.1073/pnas.2412830122. Epub 2025 Jan 23.
3
The direction of theta and alpha travelling waves modulates human memory processing.
Nat Hum Behav. 2024 Jun;8(6):1124-1135. doi: 10.1038/s41562-024-01838-3. Epub 2024 Mar 8.
4
A thalamocortical substrate for integrated information via critical synchronous bursting.
Proc Natl Acad Sci U S A. 2023 Nov 14;120(46):e2308670120. doi: 10.1073/pnas.2308670120. Epub 2023 Nov 8.
5
Neuronal connected burst cascades bridge macroscale adaptive signatures across arousal states.
Nat Commun. 2023 Oct 27;14(1):6846. doi: 10.1038/s41467-023-42465-2.
7
Mean-Field Models for EEG/MEG: From Oscillations to Waves.
Brain Topogr. 2022 Jan;35(1):36-53. doi: 10.1007/s10548-021-00842-4. Epub 2021 May 15.
8
Direction-selective motion discrimination by traveling waves in visual cortex.
PLoS Comput Biol. 2020 Sep 2;16(9):e1008164. doi: 10.1371/journal.pcbi.1008164. eCollection 2020 Sep.
9
Control of brain network dynamics across diverse scales of space and time.
Phys Rev E. 2020 Jun;101(6-1):062301. doi: 10.1103/PhysRevE.101.062301.

本文引用的文献

1
Two layers of neural variability.
Nat Neurosci. 2012 Nov;15(11):1472-4. doi: 10.1038/nn.3247.
2
Dynamic pattern formation and collisions in networks of excitable elements.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):055101. doi: 10.1103/PhysRevE.85.055101. Epub 2012 May 4.
3
A computational role for bistability and traveling waves in motor cortex.
Front Comput Neurosci. 2012 Sep 11;6:67. doi: 10.3389/fncom.2012.00067. eCollection 2012.
4
Neural synchrony within the motor system: what have we learned so far?
Front Hum Neurosci. 2012 Sep 4;6:252. doi: 10.3389/fnhum.2012.00252. eCollection 2012.
5
Traveling waves in visual cortex.
Neuron. 2012 Jul 26;75(2):218-29. doi: 10.1016/j.neuron.2012.06.029.
6
Circuits for skilled reaching and grasping.
Annu Rev Neurosci. 2012;35:559-78. doi: 10.1146/annurev-neuro-062111-150527. Epub 2012 Apr 9.
7
Ongoing cortical activity at rest: criticality, multistability, and ghost attractors.
J Neurosci. 2012 Mar 7;32(10):3366-75. doi: 10.1523/JNEUROSCI.2523-11.2012.
8
Neural mechanisms of intermuscular coherence: implications for the rectification of surface electromyography.
J Neurophysiol. 2012 Feb;107(3):796-807. doi: 10.1152/jn.00066.2011. Epub 2011 Nov 9.
9
Free energy and dendritic self-organization.
Front Syst Neurosci. 2011 Oct 11;5:80. doi: 10.3389/fnsys.2011.00080. eCollection 2011.
10
Time scale hierarchies in the functional organization of complex behaviors.
PLoS Comput Biol. 2011 Sep;7(9):e1002198. doi: 10.1371/journal.pcbi.1002198. Epub 2011 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验