School of Psychiatry, The University of New South Wales, Sydney, Australia ; The Black Dog Institute, Sydney, Australia.
PLoS Comput Biol. 2013 Oct;9(10):e1003260. doi: 10.1371/journal.pcbi.1003260. Epub 2013 Oct 31.
Traveling waves of neuronal oscillations have been observed in many cortical regions, including the motor and sensory cortex. Such waves are often modulated in a task-dependent fashion although their precise functional role remains a matter of debate. Here we conjecture that the cortex can utilize the direction and wavelength of traveling waves to encode information. We present a novel neural mechanism by which such information may be decoded by the spatial arrangement of receptors within the dendritic receptor field. In particular, we show how the density distributions of excitatory and inhibitory receptors can combine to act as a spatial filter of wave patterns. The proposed dendritic mechanism ensures that the neuron selectively responds to specific wave patterns, thus constituting a neural basis of pattern decoding. We validate this proposal in the descending motor system, where we model the large receptor fields of the pyramidal tract neurons - the principle outputs of the motor cortex - decoding motor commands encoded in the direction of traveling wave patterns in motor cortex. We use an existing model of field oscillations in motor cortex to investigate how the topology of the pyramidal cell receptor field acts to tune the cells responses to specific oscillatory wave patterns, even when those patterns are highly degraded. The model replicates key findings of the descending motor system during simple motor tasks, including variable interspike intervals and weak corticospinal coherence. By additionally showing how the nature of the wave patterns can be controlled by modulating the topology of local intra-cortical connections, we hence propose a novel integrated neuronal model of encoding and decoding motor commands.
在许多皮质区域,包括运动和感觉皮质,已经观察到神经元振荡的行波。尽管它们的确切功能作用仍存在争议,但这种波通常以任务依赖的方式进行调制。在这里,我们推测皮质可以利用行波的方向和波长来编码信息。我们提出了一种新的神经机制,通过这种机制,通过树突状受体场中的受体的空间排列,可以对这种信息进行解码。具体来说,我们展示了兴奋性和抑制性受体的密度分布如何组合起来作为波模式的空间滤波器。所提出的树突机制确保神经元选择性地响应特定的波模式,从而构成模式解码的神经基础。我们在下行运动系统中验证了这一建议,我们在该系统中对锥体束神经元(运动皮质的主要输出)的大受体场进行建模,对运动皮质中行波模式的方向进行解码,从而对运动命令进行编码。我们使用运动皮质中现有的场振荡模型来研究锥体细胞受体场的拓扑结构如何作用于调谐细胞对特定振荡波模式的反应,即使这些模式高度退化。该模型复制了简单运动任务期间下行运动系统的关键发现,包括可变的峰间间隔和弱皮质脊髓相干性。此外,通过展示如何通过调节局部皮质内连接的拓扑结构来控制波模式的性质,我们因此提出了一种新的运动命令编码和解码的整合神经元模型。