Suppr超能文献

为药物设计应用构建三维蛋白质结构模型。

Modelling three-dimensional protein structures for applications in drug design.

作者信息

Schmidt Tobias, Bergner Andreas, Schwede Torsten

机构信息

Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, 4056 Basel, Switzerland.

Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, 4056 Basel, Switzerland.

出版信息

Drug Discov Today. 2014 Jul;19(7):890-7. doi: 10.1016/j.drudis.2013.10.027. Epub 2013 Nov 8.

Abstract

A structural perspective of drug target and anti-target proteins, and their molecular interactions with biologically active molecules, largely advances many areas of drug discovery, including target validation, hit and lead finding and lead optimisation. In the absence of experimental 3D structures, protein structure prediction often offers a suitable alternative to facilitate structure-based studies. This review outlines recent methodical advances in homology modelling, with a focus on those techniques that necessitate consideration of ligand binding. In this context, model quality estimation deserves special attention because the accuracy and reliability of different structure prediction techniques vary considerably, and the quality of a model ultimately determines its usefulness for structure-based drug discovery. Examples of G-protein-coupled receptors (GPCRs) and ADMET-related proteins were selected to illustrate recent progress and current limitations of protein structure prediction. Basic guidelines for good modelling practice are also provided.

摘要

药物靶标和反靶标蛋白的结构视角,以及它们与生物活性分子的分子相互作用,在很大程度上推动了药物发现的许多领域,包括靶标验证、先导化合物发现和先导化合物优化。在缺乏实验性三维结构的情况下,蛋白质结构预测通常提供了一种合适的替代方法,以促进基于结构的研究。本综述概述了同源建模的最新方法进展,重点关注那些需要考虑配体结合的技术。在这种情况下,模型质量评估值得特别关注,因为不同结构预测技术的准确性和可靠性差异很大,而模型的质量最终决定了其在基于结构的药物发现中的有用性。选择G蛋白偶联受体(GPCR)和ADMET相关蛋白的例子来说明蛋白质结构预测的最新进展和当前局限性。还提供了良好建模实践的基本指南。

相似文献

1
Modelling three-dimensional protein structures for applications in drug design.为药物设计应用构建三维蛋白质结构模型。
Drug Discov Today. 2014 Jul;19(7):890-7. doi: 10.1016/j.drudis.2013.10.027. Epub 2013 Nov 8.
6
Protein-Protein Docking in Drug Design and Discovery.药物设计与发现中的蛋白质-蛋白质对接
Methods Mol Biol. 2018;1762:285-305. doi: 10.1007/978-1-4939-7756-7_15.
8
X-ray structure breakthroughs in the GPCR transmembrane region.G蛋白偶联受体跨膜区域的X射线结构突破。
Biochem Pharmacol. 2009 Jul 1;78(1):11-20. doi: 10.1016/j.bcp.2009.02.012. Epub 2009 Feb 27.

引用本文的文献

7
Bioinformatics Approaches in the Development of Antifungal Therapeutics and Vaccines.抗真菌治疗与疫苗研发中的生物信息学方法
Curr Genomics. 2024;25(5):323-333. doi: 10.2174/0113892029281602240422052210. Epub 2024 May 16.

本文引用的文献

1
Ensemble Docking from Homology Models.基于同源模型的集成对接
J Chem Theory Comput. 2010 Aug 10;6(8):2547-57. doi: 10.1021/ct100246y. Epub 2010 Jul 16.
4
OpenStructure: an integrated software framework for computational structural biology.开放结构:一个用于计算结构生物学的集成软件框架。
Acta Crystallogr D Biol Crystallogr. 2013 May;69(Pt 5):701-9. doi: 10.1107/S0907444913007051. Epub 2013 Apr 19.
5
The ModFOLD4 server for the quality assessment of 3D protein models.ModFOLD4 服务器用于评估 3D 蛋白质模型的质量。
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W368-72. doi: 10.1093/nar/gkt294. Epub 2013 Apr 25.
7
Molecular signatures of G-protein-coupled receptors.G 蛋白偶联受体的分子特征。
Nature. 2013 Feb 14;494(7436):185-94. doi: 10.1038/nature11896.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验