Suppr超能文献

通过微流控装置研究神经损伤。

Investigation of nerve injury through microfluidic devices.

机构信息

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, , Baltimore, MD, USA.

出版信息

J R Soc Interface. 2013 Nov 13;11(90):20130676. doi: 10.1098/rsif.2013.0676. Print 2014 Jan 6.

Abstract

Traumatic injuries, both in the central nervous system (CNS) and peripheral nervous system (PNS), can potentially lead to irreversible damage resulting in permanent loss of function. Investigating the complex dynamics involved in these processes may elucidate the biological mechanisms of both nerve degeneration and regeneration, and may potentially lead to the development of new therapies for recovery. A scientific overview on the biological foundations of nerve injury is presented. Differences between nerve regeneration in the central and PNS are discussed. Advances in microtechnology over the past several years have led to the development of invaluable tools that now facilitate investigation of neurobiology at the cellular scale. Microfluidic devices are explored as a means to study nerve injury at the necessary simplification of the cellular level, including those devices aimed at both chemical and physical injury, as well as those that recreate the post-injury environment.

摘要

创伤性损伤,无论是在中枢神经系统(CNS)还是周围神经系统(PNS)中,都可能导致不可逆转的损伤,从而导致永久性功能丧失。研究这些过程中涉及的复杂动力学可能阐明神经变性和再生的生物学机制,并可能为恢复治疗的发展带来新的契机。本文对神经损伤的生物学基础进行了科学综述。讨论了中枢和周围神经系统中神经再生的差异。过去几年微技术的进步带来了宝贵的工具,这些工具现在促进了细胞尺度上神经生物学的研究。本文探索了微流控装置作为在必要的细胞水平简化上研究神经损伤的一种手段,包括旨在进行化学和物理损伤的装置,以及那些重建损伤后环境的装置。

相似文献

1
Investigation of nerve injury through microfluidic devices.
J R Soc Interface. 2013 Nov 13;11(90):20130676. doi: 10.1098/rsif.2013.0676. Print 2014 Jan 6.
2
A Brief Review of In Vitro Models for Injury and Regeneration in the Peripheral Nervous System.
Int J Mol Sci. 2022 Jan 13;23(2):816. doi: 10.3390/ijms23020816.
5
Advances in Nerve Injury Models on a Chip.
Adv Biol (Weinh). 2023 Aug;7(8):e2200227. doi: 10.1002/adbi.202200227. Epub 2023 Jan 29.
6
Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury.
Acta Neuropathol. 2015 Nov;130(5):605-18. doi: 10.1007/s00401-015-1482-4. Epub 2015 Sep 29.
7
Microfluidic Manipulation for Biomedical Applications in the Central and Peripheral Nervous Systems.
Pharmaceutics. 2023 Jan 6;15(1):210. doi: 10.3390/pharmaceutics15010210.
8
Fibrosis and Regulation of Nerve Regeneration in the Peripheral and Central Nervous Systems.
CNS Neurol Disord Drug Targets. 2020;19(8):560-571. doi: 10.2174/1871527319666200726222558.
9
Integrated microfluidics platforms for investigating injury and regeneration of CNS axons.
Ann Biomed Eng. 2012 Jun;40(6):1268-76. doi: 10.1007/s10439-012-0515-6.
10
Role of physical exercise for improving posttraumatic nerve regeneration.
Int Rev Neurobiol. 2013;109:125-49. doi: 10.1016/B978-0-12-420045-6.00006-7.

引用本文的文献

1
Microfluidic Manipulation for Biomedical Applications in the Central and Peripheral Nervous Systems.
Pharmaceutics. 2023 Jan 6;15(1):210. doi: 10.3390/pharmaceutics15010210.
2
Microfluidics for Neuronal Cell and Circuit Engineering.
Chem Rev. 2022 Sep 28;122(18):14842-14880. doi: 10.1021/acs.chemrev.2c00212. Epub 2022 Sep 7.
3
Regulatory Effects of Gradient Microtopographies on Synapse Formation and Neurite Growth in Hippocampal Neurons.
J Micromech Microeng. 2022 Jul;32(7). doi: 10.1088/1361-6439/ac73d7. Epub 2022 Jun 10.
5
Spontaneous Functional Recovery after Focal Damage in Neuronal Cultures.
eNeuro. 2020 Jan 3;7(1). doi: 10.1523/ENEURO.0254-19.2019. Print 2020 Jan/Feb.
6
A microfluidic platform to study the effects of GDNF on neuronal axon entrapment.
J Neurosci Methods. 2018 Oct 1;308:183-191. doi: 10.1016/j.jneumeth.2018.08.002. Epub 2018 Aug 3.
7
Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering.
Biomaterials. 2019 Apr;198:146-166. doi: 10.1016/j.biomaterials.2018.05.012. Epub 2018 May 11.
8
Enhanced Immune Response in Immunodeficient Mice Improves Peripheral Nerve Regeneration Following Axotomy.
Front Cell Neurosci. 2016 Jun 14;10:151. doi: 10.3389/fncel.2016.00151. eCollection 2016.
10
Growth factor choice is critical for successful functionalization of nanoparticles.
Front Neurosci. 2015 Sep 2;9:305. doi: 10.3389/fnins.2015.00305. eCollection 2015.

本文引用的文献

1
Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers.
Science. 2013 Apr 19;340(6130):372-376. doi: 10.1126/science.1231321.
2
Microtechnologies to fuel neurobiological research with nanometer precision.
J Nanobiotechnology. 2013 Apr 10;11:11. doi: 10.1186/1477-3155-11-11.
3
Advances in microfluidics-based experimental methods for neuroscience research.
Lab Chip. 2013 Feb 21;13(4):509-21. doi: 10.1039/c2lc41081h.
6
Controlled delivery for neuro-bionic devices.
Adv Drug Deliv Rev. 2013 Apr;65(4):559-69. doi: 10.1016/j.addr.2012.06.002. Epub 2012 Jun 15.
7
A new mechanobiological era: microfluidic pathways to apply and sense forces at the cellular level.
Curr Opin Chem Biol. 2012 Aug;16(3-4):400-8. doi: 10.1016/j.cbpa.2012.03.014. Epub 2012 Apr 21.
8
Neuroscience goes on a chip.
Biosens Bioelectron. 2012 May 15;35(1):1-13. doi: 10.1016/j.bios.2012.02.012. Epub 2012 Feb 14.
9
Integrated microfluidics platforms for investigating injury and regeneration of CNS axons.
Ann Biomed Eng. 2012 Jun;40(6):1268-76. doi: 10.1007/s10439-012-0515-6.
10
Valve-based microfluidic compression platform: single axon injury and regrowth.
Lab Chip. 2011 Nov 21;11(22):3888-95. doi: 10.1039/c1lc20549h. Epub 2011 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验