Ishiyama Tatsuya, Fujikawa Shigeo, Kurz Thomas, Lauterborn Werner
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):042406. doi: 10.1103/PhysRevE.88.042406. Epub 2013 Oct 15.
A boundary condition for the Boltzmann equation (kinetic boundary condition, KBC) at the vapor-liquid interface of argon is constructed with the help of molecular dynamics (MD) simulations. The KBC is examined at a constant liquid temperature of 85 K in a wide range of nonequilibrium states of vapor. The present investigation is an extension of a previous one by Ishiyama, Yano, and Fujikawa [Phys. Rev. Lett. 95, 084504 (2005)] and provides a more complete form of the KBC. The present KBC includes a thermal accommodation coefficient in addition to evaporation and condensation coefficients, and these coefficients are determined in MD simulations uniquely. The thermal accommodation coefficient shows an anisotropic behavior at the interface for molecular velocities normal versus tangential to the interface. It is also found that the evaporation and condensation coefficients are almost constant in a fairly wide range of nonequilibrium states. The thermal accommodation coefficient of the normal velocity component is almost unity, while that of the tangential component shows a decreasing function of the density of vapor incident on the interface, indicating that the tangential velocity distribution of molecules leaving the interface into the vapor phase may deviate from the tangential parts of the Maxwell velocity distribution at the liquid temperature. A mechanism for the deviation of the KBC from the isotropic Maxwell KBC at the liquid temperature is discussed in terms of anisotropic energy relaxation at the interface. The liquid-temperature dependence of the present KBC is also discussed.
借助分子动力学(MD)模拟,构建了氩气气液界面处玻尔兹曼方程的边界条件(动力学边界条件,KBC)。在85K的恒定液体温度下,在广泛的非平衡气相状态下对KBC进行了检验。本研究是Ishiyama、Yano和Fujikawa先前研究[《物理评论快报》95, 084504 (2005)]的扩展,并提供了更完整形式的KBC。当前的KBC除了蒸发系数和凝结系数外,还包括一个热适应系数,并且这些系数在MD模拟中唯一确定。热适应系数在界面处对于垂直于和平行于界面的分子速度表现出各向异性行为。还发现,在相当广泛的非平衡状态范围内,蒸发系数和凝结系数几乎是恒定的。法向速度分量的热适应系数几乎为1,而切向分量的热适应系数则表现为入射到界面的气相密度的递减函数,这表明离开界面进入气相的分子的切向速度分布可能偏离液体温度下麦克斯韦速度分布的切向部分。从界面处的各向异性能量弛豫角度讨论了KBC在液体温度下偏离各向同性麦克斯韦KBC的机制。还讨论了当前KBC对液体温度的依赖性。