Suppr超能文献

转录组测序在小鼠大脑发育过程中鉴定出长非编码 RNA ,这些 RNA 与神经发生的决定具有功能相关性。

Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment.

机构信息

DFG-Research Center and Cluster of Excellence for Regenerative Therapies, Dresden, Germany.

出版信息

EMBO J. 2013 Dec 11;32(24):3145-60. doi: 10.1038/emboj.2013.245. Epub 2013 Nov 15.

Abstract

Transcriptome analysis of somatic stem cells and their progeny is fundamental to identify new factors controlling proliferation versus differentiation during tissue formation. Here, we generated a combinatorial, fluorescent reporter mouse line to isolate proliferating neural stem cells, differentiating progenitors and newborn neurons that coexist as intermingled cell populations during brain development. Transcriptome sequencing revealed numerous novel long non-coding (lnc)RNAs and uncharacterized protein-coding transcripts identifying the signature of neurogenic commitment. Importantly, most lncRNAs overlapped neurogenic genes and shared with them a nearly identical expression pattern suggesting that lncRNAs control corticogenesis by tuning the expression of nearby cell fate determinants. We assessed the power of our approach by manipulating lncRNAs and protein-coding transcripts with no function in corticogenesis reported to date. This led to several evident phenotypes in neurogenic commitment and neuronal survival, indicating that our study provides a remarkably high number of uncharacterized transcripts with hitherto unsuspected roles in brain development. Finally, we focussed on one lncRNA, Miat, whose manipulation was found to trigger pleiotropic effects on brain development and aberrant splicing of Wnt7b. Hence, our study suggests that lncRNA-mediated alternative splicing of cell fate determinants controls stem-cell commitment during neurogenesis.

摘要

对体干细胞及其后代的转录组分析对于确定在组织形成过程中控制增殖与分化的新因子至关重要。在这里,我们生成了一个组合的、荧光报告小鼠品系,以分离增殖的神经干细胞、分化的祖细胞和新生神经元,这些细胞在大脑发育过程中作为混杂的细胞群体共存。转录组测序揭示了许多新的长非编码(lnc)RNA 和未表征的蛋白编码转录本,确定了神经发生的特征。重要的是,大多数 lncRNA 与神经发生基因重叠,并与它们具有几乎相同的表达模式,这表明 lncRNA 通过调节附近细胞命运决定因素的表达来控制皮质发生。我们通过操纵迄今为止报道的在皮质发生中没有功能的 lncRNA 和蛋白编码转录本来评估我们方法的能力。这导致了神经发生和神经元存活中的几个明显表型,表明我们的研究提供了大量以前未被认识到的、在大脑发育中具有潜在作用的未表征转录本。最后,我们集中研究了一个 lncRNA,Miat,其操纵被发现对大脑发育和 Wnt7b 异常剪接具有多效性影响。因此,我们的研究表明,lncRNA 介导的细胞命运决定因素的可变剪接控制神经发生过程中的干细胞分化。

相似文献

2
Comprehensive Identification of Long Non-coding RNAs in Purified Cell Types from the Brain Reveals Functional LncRNA in OPC Fate Determination.
PLoS Genet. 2015 Dec 18;11(12):e1005669. doi: 10.1371/journal.pgen.1005669. eCollection 2015 Dec.
4
Identification and expression patterns of novel long non-coding RNAs in neural progenitors of the developing mammalian cortex.
Neurogenesis (Austin). 2015 Apr 11;2(1):e995524. doi: 10.1080/23262133.2014.995524. eCollection 2015.
5
The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells.
Cell Stem Cell. 2015 Apr 2;16(4):439-447. doi: 10.1016/j.stem.2015.02.007. Epub 2015 Mar 19.
7
Uncovering the roles of long noncoding RNAs in neural development and glioma progression.
Neurosci Lett. 2016 Jun 20;625:70-9. doi: 10.1016/j.neulet.2015.12.025. Epub 2015 Dec 28.
8
Long non-coding RNAs in corticogenesis: deciphering the non-coding code of the brain.
EMBO J. 2015 Dec 2;34(23):2865-84. doi: 10.15252/embj.201592655. Epub 2015 Oct 29.
9
Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo.
Cell Stem Cell. 2013 May 2;12(5):616-28. doi: 10.1016/j.stem.2013.03.003. Epub 2013 Apr 11.
10
Assessment and site-specific manipulation of DNA (hydroxy-)methylation during mouse corticogenesis.
Life Sci Alliance. 2019 Feb 27;2(2). doi: 10.26508/lsa.201900331. Print 2019 Apr.

引用本文的文献

1
LncRNAs Regulate Vasculogenic Mimicry in Human Cancers.
Cells. 2025 Apr 20;14(8):616. doi: 10.3390/cells14080616.
3
De novo identification of universal cell mechanics gene signatures.
Elife. 2025 Feb 17;12:RP87930. doi: 10.7554/eLife.87930.
4
PCAT19: the role in cancer pathogenesis and beyond.
Front Cell Dev Biol. 2024 Dec 18;12:1435717. doi: 10.3389/fcell.2024.1435717. eCollection 2024.
6
Exploring the Frontier: Antisense Long Non-Coding RNAs as Key Regulators in Alzheimer's Disease.
Aging Dis. 2024 Aug 19;16(4):1793-1812. doi: 10.14336/AD.2024.0762.
7
Neuronal maturation and axon regeneration: unfixing circuitry to enable repair.
Nat Rev Neurosci. 2024 Oct;25(10):649-667. doi: 10.1038/s41583-024-00849-3. Epub 2024 Aug 20.
8
Oligodendrocyte-specific expression of - suggests a role in myelination with prognostic value in oligodendroglioma.
Noncoding RNA Res. 2024 Jun 10;9(4):1061-1068. doi: 10.1016/j.ncrna.2024.06.008. eCollection 2024 Dec.
9
LncRNA: A multifunctional key player in non-oncological pathological conditions.
Noncoding RNA Res. 2024 Jan 20;9(2):447-462. doi: 10.1016/j.ncrna.2024.01.011. eCollection 2024 Jun.

本文引用的文献

3
Long non-coding RNA identification over mouse brain development by integrative modeling of chromatin and genomic features.
Nucleic Acids Res. 2013 Dec;41(22):10044-61. doi: 10.1093/nar/gkt818. Epub 2013 Sep 13.
4
The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis.
Mol Cell. 2013 Aug 8;51(3):349-59. doi: 10.1016/j.molcel.2013.07.017.
6
Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo.
Cell Stem Cell. 2013 May 2;12(5):616-28. doi: 10.1016/j.stem.2013.03.003. Epub 2013 Apr 11.
8
A noncoding RNA regulates the neurogenin1 gene locus during mouse neocortical development.
Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16939-44. doi: 10.1073/pnas.1202956109. Epub 2012 Oct 1.
9
Bioelectric state and cell cycle control of Mammalian neural stem cells.
Stem Cells Int. 2012;2012:816049. doi: 10.1155/2012/816049. Epub 2012 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验