From the State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences (W.S., F.L., T.S., J.X., Y.W., G.W., L.C., X.W., H.C.) and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Science (L.-L.L., S.-Q.W.), Peking University, Beijing, China; and Department of Physiology and Pharmacology, University of Bristol, City of Bristol, United Kingdom (M.B.C.).
Circ Res. 2014 Jan 31;114(3):412-20. doi: 10.1161/CIRCRESAHA.114.302938. Epub 2013 Nov 20.
In cardiac dyads, junctional Ca2+ directly controls the gating of the ryanodine receptors (RyRs), and is itself dominated by RyR-mediated Ca2+ release from the sarcoplasmic reticulum. Existing probes do not report such local Ca2+ signals because of probe diffusion, so a junction-targeted Ca2+ sensor should reveal new information on cardiac excitation-contraction coupling and its modification in disease states.
To investigate Ca2+ signaling in the nanoscopic space of cardiac dyads by targeting a new sensitive Ca2+ biosensor (GCaMP6f) to the junctional space.
By fusing GCaMP6f to the N terminus of triadin 1 or junctin, GCaMP6f-triadin 1/junctin was targeted to dyadic junctions, where it colocalized with t-tubules and RyRs after adenovirus-mediated gene transfer. This membrane protein-tagged biosensor displayed ≈4× faster kinetics than native GCaMP6f. Confocal imaging revealed junctional Ca2+ transients (Ca2+ nanosparks) that were ≈50× smaller in volume than conventional Ca2+ sparks (measured with diffusible indicators). The presence of the biosensor did not disrupt normal Ca2+ signaling. Because no indicator diffusion occurred, the amplitude and timing of release measurements were improved, despite the small recording volume. We could also visualize coactivation of subclusters of RyRs within a single junctional region, as well as quarky Ca2+ release events.
This new, targeted biosensor allows selective visualization and measurement of nanodomain Ca2+ dynamics in intact cells and can be used to give mechanistic insights into dyad RyR operation in health and in disease states such as when RyRs become orphaned.
在心脏二联体中,连接钙离子直接控制兰尼碱受体(RyRs)的门控,而本身则由肌浆网中 RyR 介导的 Ca2+释放所主导。现有的探针由于探针扩散而无法报告这种局部 Ca2+信号,因此靶向 RyR 的 Ca2+传感器应该揭示有关心脏兴奋-收缩偶联及其在疾病状态下的修饰的新信息。
通过将新型敏感 Ca2+生物传感器(GCaMP6f)靶向到连接间隙,研究心脏二联体纳米空间中的 Ca2+信号。
通过将 GCaMP6f 融合到三磷酸腺苷结合盒转运蛋白 1 或连接蛋白的 N 端,将 GCaMP6f-三磷酸腺苷结合盒转运蛋白 1/连接蛋白靶向二联体连接点,通过腺病毒介导的基因转移后,它与 t 小管和 RyRs 共定位。这种膜蛋白标记的生物传感器显示出比天然 GCaMP6f 快约 4 倍的动力学。共焦成像显示连接间隙 Ca2+瞬变(Ca2+纳米火花),其体积比传统 Ca2+火花(用可扩散指示剂测量)小约 50 倍。生物传感器的存在并未破坏正常的 Ca2+信号。由于没有指示剂扩散,尽管记录体积较小,但释放测量的幅度和时间都得到了改善。我们还可以在单个连接区域内可视化 RyR 亚簇的共激活,以及 quarky Ca2+释放事件。
这种新的、靶向的生物传感器允许选择性地可视化和测量完整细胞中纳米域 Ca2+动力学,并可用于深入了解健康状态下和疾病状态下(例如当 RyRs 成为孤儿时)二联体 RyR 操作的机制。