Suppr超能文献

在枯草芽孢杆菌中工程化木聚糖利用系统以生产酸性木寡糖。

Engineering the xylan utilization system in Bacillus subtilis for production of acidic Xylooligosaccharides.

机构信息

Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA.

出版信息

Appl Environ Microbiol. 2014 Feb;80(3):917-27. doi: 10.1128/AEM.03246-13. Epub 2013 Nov 22.

Abstract

Xylans are the predominant polysaccharides in hemicelluloses and an important potential source of biofuels and chemicals. The ability of Bacillus subtilis subsp. subtilis strain 168 to utilize xylans has been ascribed to secreted glycoside hydrolase family 11 (GH11) and GH30 endoxylanases, encoded by the xynA and xynC genes, respectively. Both of these enzymes have been defined with respect to structure and function. In this study, the effects of deletion of the xynA and xynC genes, individually and in combination, were evaluated for xylan utilization and formation of acidic xylooligosaccharides. Parent strain 168 depolymerizes methylglucuronoxylans (MeGXn), releasing the xylobiose and xylotriose utilized for growth and accumulating the aldouronate methylglucuronoxylotriose (MeGX3) with some methylglucuronoxylotetraose (MeGX4). The combined GH11 and GH30 activities process the products generated by their respective actions on MeGXn to release a maximal amount of neutral xylooligosaccharides for assimilation and growth, at the same time forming MeGX3 in which the internal xylose is substituted with methylglucuronate (MeG). Deletion of xynA results in the accumulation of β-1,4-xylooligosaccharides with degrees of polymerization ranging from 4 to 18 and an average degree of substitution of 1 in 7.2, each with a single MeG linked α-1,2 to the xylose penultimate to the xylose at the reducing terminus. Deletion of the xynC gene results in the accumulation of aldouronates comprised of 4 or more xylose residues in which the MeG may be linked α-1,2 to the xylose penultimate to the nonreducing xylose. These B. subtilis lines may be used for the production of acidic xylooligosaccharides with applications in human and veterinary medicine.

摘要

木聚糖是半纤维素中主要的多糖,也是生物燃料和化学品的重要潜在来源。枯草芽孢杆菌亚种 168 利用木聚糖的能力归因于分泌的糖苷水解酶家族 11(GH11)和 GH30 内切木聚糖酶,分别由 xynA 和 xynC 基因编码。这两种酶的结构和功能都已经得到了定义。在这项研究中,分别和组合缺失 xynA 和 xynC 基因对木聚糖的利用和酸性木寡糖的形成的影响进行了评估。亲本菌株 168 对甲基葡萄糖醛酸木聚糖(MeGXn)进行解聚,释放出用于生长的木二糖和木三糖,并积累了带有一些甲基葡萄糖醛酸木四糖(MeGX4)的醛酸甲基葡萄糖醛酸木三糖(MeGX3)。GH11 和 GH30 的联合活性对 MeGXn 的产物进行处理,以释放最大量的中性木寡糖用于同化和生长,同时形成 MeGX3,其中内部木糖被甲基葡萄糖醛酸(MeG)取代。xynA 的缺失导致β-1,4-木寡糖的积累,聚合度从 4 到 18,平均取代度为 1 中的 7.2,每个都带有一个单甲基葡萄糖醛酸(MeG)以α-1,2 键连接到木糖倒数第二位,到还原端的木糖。xynC 基因的缺失导致含有 4 个或更多木糖残基的醛酸的积累,其中 MeG 可以以α-1,2 键连接到非还原木糖的倒数第二位木糖。这些枯草芽孢杆菌系可用于生产具有在人类和兽医医学中应用的酸性木寡糖。

相似文献

1
Engineering the xylan utilization system in Bacillus subtilis for production of acidic Xylooligosaccharides.
Appl Environ Microbiol. 2014 Feb;80(3):917-27. doi: 10.1128/AEM.03246-13. Epub 2013 Nov 22.
4
Metabolic potential of Bacillus subtilis 168 for the direct conversion of xylans to fermentation products.
Appl Microbiol Biotechnol. 2016 Feb;100(3):1501-1510. doi: 10.1007/s00253-015-7124-x. Epub 2015 Nov 12.
5
GH115 α-glucuronidase and GH11 xylanase from Paenibacillus sp. JDR-2: potential roles in processing glucuronoxylans.
Appl Microbiol Biotechnol. 2017 Feb;101(4):1465-1476. doi: 10.1007/s00253-016-7899-4. Epub 2016 Oct 21.
6
Ligand bound structures of a glycosyl hydrolase family 30 glucuronoxylan xylanohydrolase.
J Mol Biol. 2011 Mar 18;407(1):92-109. doi: 10.1016/j.jmb.2011.01.010. Epub 2011 Jan 19.
8
Genes controlling xylan utilization by Bacillus subtilis.
J Bacteriol. 1983 Oct;156(1):257-63. doi: 10.1128/jb.156.1.257-263.1983.
9
GH30-7 Endoxylanase C from the Filamentous Fungus .
Appl Environ Microbiol. 2019 Oct 30;85(22). doi: 10.1128/AEM.01442-19. Print 2019 Nov 15.
10
GH30 Glucuronoxylan-Specific Xylanase from Streptomyces turgidiscabies C56.
Appl Environ Microbiol. 2018 Jan 31;84(4). doi: 10.1128/AEM.01850-17. Print 2018 Feb 15.

引用本文的文献

2
Characterization of a novel GH30 non-specific endoxylanase AcXyn30B from Acetivibrio clariflavus.
Appl Microbiol Biotechnol. 2024 Apr 29;108(1):312. doi: 10.1007/s00253-024-13155-w.
4
A novel fungal GH30 xylanase with xylobiohydrolase auxiliary activity.
Biotechnol Biofuels. 2019 May 11;12:120. doi: 10.1186/s13068-019-1455-2. eCollection 2019.
5
Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties.
Appl Microbiol Biotechnol. 2018 Nov;102(21):9081-9088. doi: 10.1007/s00253-018-9343-4. Epub 2018 Sep 8.
8
Dietary Corn Bran Fermented by MA139 Decreased Gut Cellulolytic Bacteria and Microbiota Diversity in Finishing Pigs.
Front Cell Infect Microbiol. 2017 Dec 22;7:526. doi: 10.3389/fcimb.2017.00526. eCollection 2017.
9
Bacterial xylanases: biology to biotechnology.
3 Biotech. 2016 Dec;6(2):150. doi: 10.1007/s13205-016-0457-z. Epub 2016 Jun 30.
10
A xylose-stimulated xylanase-xylose binding protein chimera created by random nonhomologous recombination.
Biotechnol Biofuels. 2016 Jun 6;9:119. doi: 10.1186/s13068-016-0529-7. eCollection 2016.

本文引用的文献

1
Pentosan polysulfate: a novel therapy for the mucopolysaccharidoses.
PLoS One. 2013;8(1):e54459. doi: 10.1371/journal.pone.0054459. Epub 2013 Jan 24.
2
Novel structural features of xylanase A1 from Paenibacillus sp. JDR-2.
J Struct Biol. 2012 Nov;180(2):303-11. doi: 10.1016/j.jsb.2012.09.007. Epub 2012 Sep 18.
6
Ligand bound structures of a glycosyl hydrolase family 30 glucuronoxylan xylanohydrolase.
J Mol Biol. 2011 Mar 18;407(1):92-109. doi: 10.1016/j.jmb.2011.01.010. Epub 2011 Jan 19.
7
Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups.
FEBS Lett. 2010 Nov 5;584(21):4435-41. doi: 10.1016/j.febslet.2010.09.051. Epub 2010 Oct 8.
8
Heterologous protein secretion by bacillus species from the cradle to the grave.
Adv Appl Microbiol. 2010;73:1-25. doi: 10.1016/S0065-2164(10)73001-X.
10
New transposon delivery plasmids for insertional mutagenesis in Bacillus anthracis.
J Microbiol Methods. 2007 Dec;71(3):332-5. doi: 10.1016/j.mimet.2007.09.006. Epub 2007 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验