Suppr超能文献

酶的结构:乳清酸 5′-单磷酸脱羧酶的激活氧阴离子结合域。

Enzyme architecture: the activating oxydianion binding domain for orotidine 5'-monophophate decarboxylase.

机构信息

Department of Chemistry, University at Buffalo, SUNY , Buffalo, New York 14260-3000, United States.

出版信息

J Am Chem Soc. 2013 Dec 11;135(49):18343-6. doi: 10.1021/ja4107513. Epub 2013 Nov 27.

Abstract

Orotidine 5'-monophosphate decarboxylase catalyzes the decarboxylation of truncated substrate (1-β-D-erythrofuranosyl)orotic acid to form (1-β-D-erythrofuranosyl)uracil. This enzyme-catalyzed reaction is activated by tetrahedral oxydianions, which bind weakly to unliganded OMPDC and tightly to the enzyme-transition state complex, with the following intrinsic oxydianion binding energies (kcal/mol): SO3(2-), -8.3; HPO3(2-), -7.7; S2O3(2-), -4.6; SO4(2-), -4.5; HOPO3(2-), -3.0; HOAsO3(2-), no activation detected. We propose that the oxydianion and orotate binding domains of OMPDC perform complementary functions in catalysis of decarboxylation reactions: (1) The orotate binding domain carries out decarboxylation of the orotate ring. (2) The activating oxydianion binding domain has the cryptic function of utilizing binding interactions with tetrahedral inorganic oxydianions to drive an enzyme conformational change that results in the stabilization of transition states at the distant orotate domain.

摘要

乳清酸 5'-单磷酸脱羧酶催化截断底物(1-β-D-赤式呋喃糖基)乳清酸的脱羧反应,形成(1-β-D-赤式呋喃糖基)尿嘧啶。该酶催化反应被四面体含氧二阴离子激活,含氧二阴离子与未配位的 OMPDC 结合较弱,与酶过渡态复合物结合紧密,以下是含氧二阴离子结合能(千卡/摩尔):SO3(2-), -8.3; HPO3(2-), -7.7; S2O3(2-), -4.6; SO4(2-), -4.5; HOPO3(2-), -3.0; HOAsO3(2-), 未检测到激活。我们提出,OMPDC 的含氧二阴离子和乳清酸盐结合域在脱羧反应的催化中发挥互补功能:(1)乳清酸盐结合域进行乳清酸盐环的脱羧反应。(2)激活的含氧二阴离子结合域具有隐蔽功能,利用与四面体无机含氧二阴离子的结合相互作用来驱动酶构象变化,导致远在乳清酸盐域的过渡态稳定。

相似文献

1
Enzyme architecture: the activating oxydianion binding domain for orotidine 5'-monophophate decarboxylase.
J Am Chem Soc. 2013 Dec 11;135(49):18343-6. doi: 10.1021/ja4107513. Epub 2013 Nov 27.
3
Enzyme Architecture: Erection of Active Orotidine 5'-Monophosphate Decarboxylase by Substrate-Induced Conformational Changes.
J Am Chem Soc. 2017 Nov 15;139(45):16048-16051. doi: 10.1021/jacs.7b08897. Epub 2017 Nov 1.
4
Protein-Ribofuranosyl Interactions Activate Orotidine 5'-Monophosphate Decarboxylase for Catalysis.
Biochemistry. 2021 Nov 16;60(45):3362-3373. doi: 10.1021/acs.biochem.1c00589. Epub 2021 Nov 2.
8
Orotidine 5'-Monophosphate Decarboxylase: Probing the Limits of the Possible for Enzyme Catalysis.
Acc Chem Res. 2018 Apr 17;51(4):960-969. doi: 10.1021/acs.accounts.8b00059. Epub 2018 Mar 29.
10
Orotidine 5'-monophosphate decarboxylase: transition state stabilization from remote protein-phosphodianion interactions.
Biochemistry. 2012 Jun 12;51(23):4630-2. doi: 10.1021/bi300585e. Epub 2012 May 31.

引用本文的文献

1
Adenylate Kinase-Catalyzed Reactions of AMP in Pieces: Specificity for Catalysis at the Nucleoside Activator and Dianion Catalytic Sites.
Biochemistry. 2022 Dec 6;61(23):2766-2775. doi: 10.1021/acs.biochem.2c00531. Epub 2022 Nov 22.
3
Linking coupled motions and entropic effects to the catalytic activity of 2-deoxyribose-5-phosphate aldolase (DERA).
Chem Sci. 2016 Feb 1;7(2):1415-1421. doi: 10.1039/c5sc03666f. Epub 2015 Nov 17.
4
Orotidine 5'-Monophosphate Decarboxylase: Probing the Limits of the Possible for Enzyme Catalysis.
Acc Chem Res. 2018 Apr 17;51(4):960-969. doi: 10.1021/acs.accounts.8b00059. Epub 2018 Mar 29.
5
Enzyme Architecture: Erection of Active Orotidine 5'-Monophosphate Decarboxylase by Substrate-Induced Conformational Changes.
J Am Chem Soc. 2017 Nov 15;139(45):16048-16051. doi: 10.1021/jacs.7b08897. Epub 2017 Nov 1.
6
Enzyme activation through the utilization of intrinsic dianion binding energy.
Protein Eng Des Sel. 2017 Mar 1;30(3):157-165. doi: 10.1093/protein/gzw064.
8
Role of Loop-Clamping Side Chains in Catalysis by Triosephosphate Isomerase.
J Am Chem Soc. 2015 Dec 9;137(48):15185-97. doi: 10.1021/jacs.5b09328. Epub 2015 Nov 30.
9
Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily.
J Am Chem Soc. 2015 Jul 22;137(28):9061-76. doi: 10.1021/jacs.5b03945. Epub 2015 Jul 10.

本文引用的文献

3
Quantum and classical simulations of orotidine monophosphate decarboxylase: support for a direct decarboxylation mechanism.
Biochemistry. 2013 Jun 25;52(25):4382-90. doi: 10.1021/bi400190v. Epub 2013 Jun 11.
4
Magnitude and origin of the enhanced basicity of the catalytic glutamate of triosephosphate isomerase.
J Am Chem Soc. 2013 Apr 24;135(16):5978-81. doi: 10.1021/ja401504w. Epub 2013 Apr 10.
6
Specificity in transition state binding: the Pauling model revisited.
Biochemistry. 2013 Mar 26;52(12):2021-35. doi: 10.1021/bi301491r. Epub 2013 Feb 4.
8
Orotidine 5'-monophosphate decarboxylase: transition state stabilization from remote protein-phosphodianion interactions.
Biochemistry. 2012 Jun 12;51(23):4630-2. doi: 10.1021/bi300585e. Epub 2012 May 31.
9
Mechanism for activation of triosephosphate isomerase by phosphite dianion: the role of a hydrophobic clamp.
J Am Chem Soc. 2012 Jun 20;134(24):10286-98. doi: 10.1021/ja303695u. Epub 2012 Jun 6.
10
A paradigm for enzyme-catalyzed proton transfer at carbon: triosephosphate isomerase.
Biochemistry. 2012 Apr 3;51(13):2652-61. doi: 10.1021/bi300195b. Epub 2012 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验