Suppr超能文献

人诱导多能干细胞来源的间充质干细胞接种于磷酸钙支架用于骨再生。

Human induced pluripotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scaffold for bone regeneration.

作者信息

Tang Minghui, Chen Wenchuan, Liu Jun, Weir Michael D, Cheng Linzhao, Xu Hockin H K

机构信息

1 Biomaterials and Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School , Baltimore, Maryland.

出版信息

Tissue Eng Part A. 2014 Apr;20(7-8):1295-305. doi: 10.1089/ten.TEA.2013.0211. Epub 2014 Jan 7.

Abstract

Tissue engineering provides an important approach for bone regeneration. Calcium phosphate cement (CPC) can be injected to fill complex-shaped bone defects with excellent osteoconductivity. Induced pluripotent stem cells (iPSCs) are exciting for regenerative medicine due to their potential to proliferate and differentiate into cells of all three germ layers. To date, there has been no report on iPSC seeding with CPC scaffolds. The objectives of this study were to (1) obtain iPSC-derived mesenchymal stem cells (iPSC-MSCs); (2) seed iPSC-MSCs on CPC scaffold for the first time to investigate cell attachment and proliferation; and (3) investigate osteogenic differentiation of iPSC-MSCs on CPC and mineral synthesis by the cells. iPSCs were derived from adult marrow CD34+ cells that were reprogrammed by a single episomal vector pEB-C5. iPSCs were cultured to form embryoid bodies (EBs), and MSCs were migrated out of EBs. Flow cytometry indicated that iPSC-MSCs expressed typical surface antigen profile of MSCs. Mesenchymal differentiation of iPSC-MSCs demonstrated that the iPSC-MSCs had the potential to differentiate into adipocytes, chondrocytes, and osteoblasts. iPSC-MSCs had good viability when attached on CPC scaffold. iPSC-MSCs differentiated into the osteogenic lineage and synthesized bone minerals. iPSC-MSCs on CPC in osteogenic medium yielded higher gene expressions of osteogenic markers including alkaline phosphatase (ALP), osteocalcin, collagen type I, and Runt-related transcription factor 2 than those in control medium (p<0.05). iPSC-MSCs on CPC in osteogenic medium had 10-fold increase in ALP protein than that in control medium (p<0.05). Bone mineral synthesis by iPSC-MSCs adherent to CPC scaffold was increased with time, and mineralization in osteogenic medium was three to four fold that in control medium. In conclusion, iPSCs were derived from adult marrow CD34+ cells that were reprogrammed by a single episomal vector pEB-C5, and MSCs were generated from the EBs. iPSC-MSCs showed good viability and osteogenic differentiation on CPC scaffold for the first time; hence, the novel iPSC-MSC-CPC construct is promising to promote bone regeneration in dental, craniofacial, and orthopedic repairs.

摘要

组织工程为骨再生提供了一种重要方法。磷酸钙骨水泥(CPC)可注射用于填充复杂形状的骨缺损,具有优异的骨传导性。诱导多能干细胞(iPSC)因其具有增殖并分化为所有三个胚层细胞的潜力,在再生医学领域备受关注。迄今为止,尚无关于iPSC接种于CPC支架的报道。本研究的目的是:(1)获得iPSC来源的间充质干细胞(iPSC-MSC);(2)首次将iPSC-MSC接种于CPC支架,研究细胞黏附和增殖情况;(3)研究iPSC-MSC在CPC上的成骨分化及细胞的矿物质合成情况。iPSC由成人骨髓CD34+细胞经单个附加型载体pEB-C5重编程而来。将iPSC培养形成胚状体(EB),间充质干细胞从EB中迁移出来。流式细胞术表明iPSC-MSC表达间充质干细胞典型的表面抗原谱。iPSC-MSC的间充质分化表明其具有分化为脂肪细胞、软骨细胞和成骨细胞的潜力。iPSC-MSC附着于CPC支架时具有良好的活力。iPSC-MSC分化为成骨谱系并合成骨矿物质。与对照培养基相比,在成骨培养基中接种于CPC上的iPSC-MSC产生的成骨标志物(包括碱性磷酸酶(ALP)、骨钙素、I型胶原和Runt相关转录因子2)的基因表达更高(p<0.05)。在成骨培养基中接种于CPC上的iPSC-MSC的ALP蛋白含量比对照培养基中的增加了10倍(p<0.05)。附着于CPC支架的iPSC-MSC的骨矿物质合成随时间增加,且成骨培养基中的矿化程度是对照培养基中的三到四倍。总之,iPSC由成人骨髓CD34+细胞经单个附加型载体pEB-C5重编程而来,间充质干细胞从EB中产生。iPSC-MSC首次在CPC支架上显示出良好的活力和成骨分化能力;因此,新型的iPSC-MSC-CPC构建体有望促进牙科、颅面和骨科修复中的骨再生。

相似文献

1
Human induced pluripotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scaffold for bone regeneration.
Tissue Eng Part A. 2014 Apr;20(7-8):1295-305. doi: 10.1089/ten.TEA.2013.0211. Epub 2014 Jan 7.
2
Human embryonic stem cell-derived mesenchymal stem cell seeding on calcium phosphate cement-chitosan-RGD scaffold for bone repair.
Tissue Eng Part A. 2013 Apr;19(7-8):915-27. doi: 10.1089/ten.TEA.2012.0172. Epub 2013 Jan 28.
3
Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering.
Biomaterials. 2013 Oct;34(32):7862-72. doi: 10.1016/j.biomaterials.2013.07.029. Epub 2013 Jul 24.
4
Metformin induces osteoblastic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells.
J Tissue Eng Regen Med. 2018 Feb;12(2):437-446. doi: 10.1002/term.2470. Epub 2017 Aug 11.
7
Effect of NELL1 gene overexpression in iPSC-MSCs seeded on calcium phosphate cement.
Acta Biomater. 2014 Dec;10(12):5128-5138. doi: 10.1016/j.actbio.2014.08.016. Epub 2014 Aug 23.
8
Conditioned Medium Enhances Osteogenic Differentiation of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells.
Tissue Eng Regen Med. 2019 Jan 29;16(2):141-150. doi: 10.1007/s13770-018-0173-3. eCollection 2019 Apr.
9
Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair.
Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:1125-36. doi: 10.1016/j.msec.2016.08.019. Epub 2016 Aug 10.
10
Human embryonic stem cells and macroporous calcium phosphate construct for bone regeneration in cranial defects in rats.
Acta Biomater. 2014 Oct;10(10):4484-93. doi: 10.1016/j.actbio.2014.06.027. Epub 2014 Jun 24.

引用本文的文献

1
Osteogenesis of Human iPSC-Derived MSCs by PLLA/SF Nanofiber Scaffolds Loaded with Extracellular Matrix.
J Tissue Eng Regen Med. 2023 Feb 6;2023:5280613. doi: 10.1155/2023/5280613. eCollection 2023.
2
Lubrication for Osteoarthritis: From Single-Function to Multifunctional Lubricants.
Int J Mol Sci. 2025 Feb 21;26(5):1856. doi: 10.3390/ijms26051856.
3
Murine iPSC-Loaded Scaffold Grafts Improve Bone Regeneration in Critical-Size Bone Defects.
Int J Mol Sci. 2024 May 20;25(10):5555. doi: 10.3390/ijms25105555.
4
Regulation Mechanisms and Maintenance Strategies of Stemness in Mesenchymal Stem Cells.
Stem Cell Rev Rep. 2024 Feb;20(2):455-483. doi: 10.1007/s12015-023-10658-3. Epub 2023 Nov 27.
6
iPSC-derived mesenchymal stem cells attenuate cerebral ischemia-reperfusion injury by inhibiting inflammatory signaling and oxidative stress.
Mol Ther Methods Clin Dev. 2023 Jul 15;30:333-349. doi: 10.1016/j.omtm.2023.07.005. eCollection 2023 Sep 14.
9
Current Application of iPS Cells in the Dental Tissue Regeneration.
Biomedicines. 2022 Dec 16;10(12):3269. doi: 10.3390/biomedicines10123269.
10
Synthetic materials in craniofacial regenerative medicine: A comprehensive overview.
Front Bioeng Biotechnol. 2022 Nov 9;10:987195. doi: 10.3389/fbioe.2022.987195. eCollection 2022.

本文引用的文献

1
Human embryonic stem cell encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering.
Acta Biomater. 2012 Sep;8(9):3436-45. doi: 10.1016/j.actbio.2012.05.016. Epub 2012 May 22.
4
Collagen-calcium phosphate cement scaffolds seeded with umbilical cord stem cells for bone tissue engineering.
Tissue Eng Part A. 2011 Dec;17(23-24):2943-54. doi: 10.1089/ten.tea.2010.0674. Epub 2011 Aug 18.
5
Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs.
Biomaterials. 2011 Aug;32(22):5065-76. doi: 10.1016/j.biomaterials.2011.03.053. Epub 2011 Apr 13.
6
The tumorigenicity of human embryonic and induced pluripotent stem cells.
Nat Rev Cancer. 2011 Apr;11(4):268-77. doi: 10.1038/nrc3034. Epub 2011 Mar 10.
7
Characterization and in vivo testing of mesenchymal stem cells derived from human embryonic stem cells.
Tissue Eng Part A. 2011 Jun;17(11-12):1517-25. doi: 10.1089/ten.TEA.2010.0460. Epub 2011 Mar 4.
9
Stem cell-calcium phosphate constructs for bone engineering.
J Dent Res. 2010 Dec;89(12):1482-8. doi: 10.1177/0022034510384623. Epub 2010 Oct 6.
10
Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration.
J Cell Physiol. 2011 Jan;226(1):150-7. doi: 10.1002/jcp.22316.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验