Video Analytics Lab, Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012, India.
Comput Med Imaging Graph. 2014 Jan;38(1):49-56. doi: 10.1016/j.compmedimag.2013.10.007. Epub 2013 Nov 6.
Approximate Nearest Neighbour Field maps are commonly used by computer vision and graphics community to deal with problems like image completion, retargetting, denoising, etc. In this paper, we extend the scope of usage of ANNF maps to medical image analysis, more specifically to optic disk detection in retinal images. In the analysis of retinal images, optic disk detection plays an important role since it simplifies the segmentation of optic disk and other retinal structures. The proposed approach uses FeatureMatch, an ANNF algorithm, to find the correspondence between a chosen optic disk reference image and any given query image. This correspondence provides a distribution of patches in the query image that are closest to patches in the reference image. The likelihood map obtained from the distribution of patches in query image is used for optic disk detection. The proposed approach is evaluated on five publicly available DIARETDB0, DIARETDB1, DRIVE, STARE and MESSIDOR databases, with total of 1540 images. We show, experimentally, that our proposed approach achieves an average detection accuracy of 99% and an average computation time of 0.2 s per image.
近似最近邻场图通常被计算机视觉和图形社区用于处理图像完成、重定向、去噪等问题。在本文中,我们将 ANNF 图的使用范围扩展到医学图像分析,更具体地说是到视网膜图像中的视盘检测。在视网膜图像分析中,视盘检测起着重要的作用,因为它简化了视盘和其他视网膜结构的分割。所提出的方法使用 FeatureMatch,一种 ANNF 算法,在选定的视盘参考图像和任何给定的查询图像之间找到对应关系。这种对应关系提供了查询图像中与参考图像中最接近的补丁的分布。从查询图像中补丁分布获得的可能性图用于视盘检测。该方法在五个公开的 DIARETDB0、DIARETDB1、DRIVE、STARE 和 MESSIDOR 数据库上进行了评估,总共有 1540 张图像。实验表明,我们提出的方法的平均检测准确率为 99%,平均每张图像的计算时间为 0.2 秒。