Suppr超能文献

使用 DNA 折纸支架进行金属纳米粒子、量子点和有机染料的分级组装。

Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds.

机构信息

1] Molecular Self-Assembly and Nanoengineering Group, Physics Department and CeNS, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany [2].

1] Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universität München, Amalienstrasse 54, 80799 Munich, Germany [2].

出版信息

Nat Nanotechnol. 2014 Jan;9(1):74-8. doi: 10.1038/nnano.2013.253. Epub 2013 Dec 1.

Abstract

The self-assembly of nanoscale elements into three-dimensional structures with precise shapes and sizes is important in fields such as nanophotonics, metamaterials and biotechnology. Short molecular linkers have previously been used to create assemblies of nanoparticles, but the approach is limited to small interparticle distances, typically less than 10 nm. Alternatively, DNA origami can precisely organize nanoscale objects over much larger length scales. Here we show that rigid DNA origami scaffolds can be used to assemble metal nanoparticles, quantum dots and organic dyes into hierarchical nanoclusters that have a planet-satellite-type structure. The nanoclusters have a tunable stoichiometry, defined distances of 5-200 nm between components, and controllable overall sizes of up to 500 nm. We also show that the nanoscale components can be positioned along the radial DNA spacers of the nanostructures, which allows short- and long-range interactions between nanoparticles and dyes to be studied in solution. The approach could, in the future, be used to construct efficient energy funnels, complex plasmonic architectures, and porous, nanoengineered scaffolds for catalysis.

摘要

将纳米级元件自组装成具有精确形状和尺寸的三维结构在纳米光子学、超材料和生物技术等领域很重要。短分子连接物以前曾被用于制造纳米粒子的组装体,但这种方法仅限于小的粒子间距离,通常小于 10nm。或者,DNA 折纸术可以在更大的长度尺度上精确地组织纳米级物体。在这里,我们展示了刚性 DNA 折纸支架可以用来组装金属纳米粒子、量子点和有机染料,形成具有行星-卫星型结构的分级纳米团簇。纳米团簇具有可调的化学计量比,定义了组件之间 5-200nm 的距离,并且可控的总尺寸高达 500nm。我们还表明,纳米级组件可以沿着纳米结构的径向 DNA 间隔物定位,这允许在溶液中研究纳米粒子和染料之间的短程和长程相互作用。该方法未来可用于构建高效能量漏斗、复杂等离子体结构以及用于催化的多孔纳米工程支架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验