Suppr超能文献

二酰基甘油激酶 ζ 和磷脂酸在机械激活哺乳动物雷帕霉素靶蛋白 (mTOR) 信号和骨骼肌肥大中的作用。

The role of diacylglycerol kinase ζ and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy.

机构信息

From the Program in Cellular and Molecular Biology and.

出版信息

J Biol Chem. 2014 Jan 17;289(3):1551-63. doi: 10.1074/jbc.M113.531392. Epub 2013 Dec 3.

Abstract

The activation of mTOR signaling is essential for mechanically induced changes in skeletal muscle mass, and previous studies have suggested that mechanical stimuli activate mTOR (mammalian target of rapamycin) signaling through a phospholipase D (PLD)-dependent increase in the concentration of phosphatidic acid (PA). Consistent with this conclusion, we obtained evidence which further suggests that mechanical stimuli utilize PA as a direct upstream activator of mTOR signaling. Unexpectedly though, we found that the activation of PLD is not necessary for the mechanically induced increases in PA or mTOR signaling. Motivated by this observation, we performed experiments that were aimed at identifying the enzyme(s) that promotes the increase in PA. These experiments revealed that mechanical stimulation increases the concentration of diacylglycerol (DAG) and the activity of DAG kinases (DGKs) in membranous structures. Furthermore, using knock-out mice, we determined that the ζ isoform of DGK (DGKζ) is necessary for the mechanically induced increase in PA. We also determined that DGKζ significantly contributes to the mechanical activation of mTOR signaling, and this is likely driven by an enhanced binding of PA to mTOR. Last, we found that the overexpression of DGKζ is sufficient to induce muscle fiber hypertrophy through an mTOR-dependent mechanism, and this event requires DGKζ kinase activity (i.e. the synthesis of PA). Combined, these results indicate that DGKζ, but not PLD, plays an important role in mechanically induced increases in PA and mTOR signaling. Furthermore, this study suggests that DGKζ could be a fundamental component of the mechanism(s) through which mechanical stimuli regulate skeletal muscle mass.

摘要

mTOR 信号的激活对于骨骼肌质量的机械诱导变化至关重要,先前的研究表明,机械刺激通过磷脂酶 D(PLD)依赖性增加磷脂酸(PA)浓度来激活 mTOR(哺乳动物雷帕霉素靶蛋白)信号。与这一结论一致,我们获得了进一步的证据,表明机械刺激利用 PA 作为 mTOR 信号的直接上游激活剂。然而,出乎意料的是,我们发现 PLD 的激活对于机械诱导的 PA 或 mTOR 信号的增加不是必需的。受此观察结果的启发,我们进行了旨在确定促进 PA 增加的酶的实验。这些实验表明,机械刺激增加了膜结构中二酰基甘油(DAG)的浓度和 DAG 激酶(DGK)的活性。此外,通过敲除小鼠,我们确定 DGK 的 ζ 同工型(DGKζ)对于 PA 的机械诱导增加是必需的。我们还确定 DGKζ 显著促进了 mTOR 信号的机械激活,这可能是由于 PA 与 mTOR 的结合增强所致。最后,我们发现 DGKζ 的过表达通过 mTOR 依赖性机制足以诱导肌肉纤维肥大,并且该事件需要 DGKζ 激酶活性(即 PA 的合成)。综上所述,这些结果表明,DGKζ 而不是 PLD 在机械诱导的 PA 和 mTOR 信号增加中发挥重要作用。此外,这项研究表明,DGKζ 可能是机械刺激调节骨骼肌质量的机制的基本组成部分。

相似文献

2
The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle.
Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4741-6. doi: 10.1073/pnas.0600678103. Epub 2006 Mar 14.
4
Phospholipase D and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mTOR).
J Biol Chem. 2014 Aug 15;289(33):22583-22588. doi: 10.1074/jbc.R114.566091. Epub 2014 Jul 2.
5
Modulation of the mammalian target of rapamycin pathway by diacylglycerol kinase-produced phosphatidic acid.
J Biol Chem. 2005 Mar 18;280(11):10091-9. doi: 10.1074/jbc.M412296200. Epub 2005 Jan 4.
6
Inhibited insulin signaling in mouse hepatocytes is associated with increased phosphatidic acid but not diacylglycerol.
J Biol Chem. 2015 Feb 6;290(6):3519-28. doi: 10.1074/jbc.M114.602789. Epub 2014 Dec 15.
8
Regulation of hippocampal long-term potentiation and long-term depression by diacylglycerol kinase ζ.
Hippocampus. 2012 May;22(5):1018-26. doi: 10.1002/hipo.20889. Epub 2010 Nov 10.
9
The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle.
Appl Physiol Nutr Metab. 2015 Dec;40(12):1233-41. doi: 10.1139/apnm-2015-0350. Epub 2015 Sep 21.
10
Diacylglycerol kinase η regulates C2C12 myoblast proliferation through the mTOR signaling pathway.
Biochimie. 2020 Oct;177:13-24. doi: 10.1016/j.biochi.2020.07.018. Epub 2020 Aug 11.

引用本文的文献

1
Resistance exercise and skeletal muscle: protein synthesis, degradation, and controversies.
Eur J Appl Physiol. 2025 Jun 13. doi: 10.1007/s00421-025-05832-z.
2
Piezo1 channels enhance anabolic signaling activation induced by electrical stimulation of cultured myotubes.
FEBS Open Bio. 2025 Jun;15(6):940-948. doi: 10.1002/2211-5463.70008. Epub 2025 Feb 17.
3
Skeletal muscle growth to combat diabetes and obesity: the potential role of muscle-secreted factors.
Obesity (Silver Spring). 2025 Mar;33(3):435-451. doi: 10.1002/oby.24223. Epub 2025 Feb 13.
5
Diacylglycerol kinase δ is required for skeletal muscle development and regeneration.
FASEB Bioadv. 2024 Nov 29;7(1):e1481. doi: 10.1096/fba.2024-00134. eCollection 2025 Jan.
7
Diacylglycerol kinase γ facilitates the proliferation and migration of neural stem cells in the developing neural tube.
Acta Biochim Biophys Sin (Shanghai). 2024 Oct 23;57(2):250-260. doi: 10.3724/abbs.2024156.
8
Molecular aspects of the exercise response and training adaptation in skeletal muscle.
Free Radic Biol Med. 2024 Oct;223:53-68. doi: 10.1016/j.freeradbiomed.2024.07.026. Epub 2024 Jul 24.

本文引用的文献

1
The mechanical activation of mTOR signaling: an emerging role for late endosome/lysosomal targeting.
J Muscle Res Cell Motil. 2014 Feb;35(1):11-21. doi: 10.1007/s10974-013-9367-4. Epub 2013 Oct 29.
2
Smad3 induces atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo.
Mol Endocrinol. 2013 Nov;27(11):1946-57. doi: 10.1210/me.2013-1194. Epub 2013 Sep 3.
3
5
Cluster analysis reveals differential transcript profiles associated with resistance training-induced human skeletal muscle hypertrophy.
Physiol Genomics. 2013 Jun 17;45(12):499-507. doi: 10.1152/physiolgenomics.00167.2012. Epub 2013 Apr 30.
9
Phosphatidic acid mediates the targeting of tBid to induce lysosomal membrane permeabilization and apoptosis.
J Lipid Res. 2012 Oct;53(10):2102-2114. doi: 10.1194/jlr.M027557. Epub 2012 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验