University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536, United States.
J Chem Inf Model. 2014 Jan 27;54(1):338-46. doi: 10.1021/ci4005496. Epub 2013 Dec 23.
We present an efficient and rational ligand/structure shape-based virtual screening approach combining our previous ligand shape-based similarity SABRE (shape-approach-based routines enhanced) and the 3D shape of the receptor binding site. Our approach exploits the pharmacological preferences of a number of known active ligands to take advantage of the structural diversities and chemical similarities, using a linear combination of weighted molecular shape density. Furthermore, the algorithm generates a consensus molecular-shape pattern recognition that is used to filter and place the candidate structure into the binding pocket. The descriptor pool used to construct the consensus molecular-shape pattern consists of four dimensional (4D) fingerprints generated from the distribution of conformer states available to a molecule and the 3D shapes of a set of active ligands computed using SABRE software. The virtual screening efficiency of SABRE was validated using the Database of Useful Decoys (DUD) and the filtered version (WOMBAT) of 10 DUD targets. The ligand/structure shape-based similarity SABRE algorithm outperforms several other widely used virtual screening methods which uses the data fusion of multiscreening tools (2D and 3D fingerprints) and demonstrates a superior early retrieval rate of active compounds (EF(0.1%) = 69.0% and EF(1%) = 98.7%) from a large size of ligand database (∼95,000 structures). Therefore, our developed similarity approach can be of particular use for identifying active compounds that are similar to reference molecules and predicting activity against other targets (chemogenomics). An academic license of the SABRE program is available on request.
我们提出了一种有效的、基于配体/结构形状的虚拟筛选方法,结合了我们之前的基于配体形状的相似性 SABRE(增强的形状方法程序)和受体结合位点的 3D 形状。我们的方法利用了许多已知活性配体的药理学偏好,利用结构多样性和化学相似性,使用加权分子形状密度的线性组合。此外,该算法生成了一种共识分子形状模式识别,用于过滤和将候选结构放置在结合口袋中。用于构建共识分子形状模式的描述符池由从可用分子构象状态分布生成的四个维度(4D)指纹和使用 SABRE 软件计算的一组活性配体的 3D 形状组成。使用数据库中的有用诱饵(DUD)和 10 个 DUD 靶标过滤版本(WOMBAT)验证了 SABRE 的虚拟筛选效率。基于配体/结构形状的相似性 SABRE 算法优于其他几种广泛使用的虚拟筛选方法,这些方法使用多筛选工具(2D 和 3D 指纹)的数据融合,并证明了从大型配体数据库(约 95,000 个结构)中快速检索活性化合物的能力(EF(0.1%)=69.0%,EF(1%)=98.7%)。因此,我们开发的相似性方法特别适用于识别与参考分子相似的活性化合物,并预测对其他靶标的活性(化学生物学)。可根据要求提供 SABRE 程序的学术许可证。