Institut Charles Delaunay-LM2S-UMR STMR 6279 CNRS, University of Technology of Troyes, Troyes 10004, France.
Sensors (Basel). 2013 Dec 12;13(12):17130-55. doi: 10.3390/s131217130.
The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method.
异常事件检测问题是实时视频监控中的一个重要课题。在本文中,我们提出了一种新颖的在线一类分类算法,即在线最小二乘一类支持向量机(online LS-OC-SVM),并结合其稀疏版本(sparse online LS-OC-SVM)。LS-OC-SVM 以正则化最小二乘意义上的最优描述方式从训练对象中提取超平面。online LS-OC-SVM 利用有限数量的样本学习训练集,以提供基本的正常模型,然后通过剩余数据更新模型。在稀疏在线方案中,通过一致性准则来控制模型的复杂度。采用在线 LS-OC-SVM 来处理异常事件检测问题。视频的每一帧都由描述运动信息的协方差矩阵描述符来表示,然后将其分类为正常帧或异常帧。在二维合成分布数据集和基准视频监控数据集上进行了实验,以证明所提出的在线 LS-OC-SVM 方法的有前景的结果。