Suppr超能文献

生物瓣叶对氧化的易感性。

The susceptibility of bioprosthetic heart valve leaflets to oxidation.

机构信息

Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.

Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

出版信息

Biomaterials. 2014 Feb;35(7):2097-102. doi: 10.1016/j.biomaterials.2013.11.045. Epub 2013 Dec 18.

Abstract

The clinical use of bioprosthetic heart valves (BHV) is limited due to device failure caused by structural degeneration of BHV leaflets. In this study we investigated the hypothesis that oxidative stress contributes to this process. Fifteen clinical BHV that had been removed for device failure were analyzed for oxidized amino acids using mass spectrometry. Significantly increased levels of ortho-tyrosine, meta-tyrosine and dityrosine were present in clinical BHV explants as compared to the non-implanted BHV material glutaraldehyde treated bovine pericardium (BP). BP was exposed in vitro to oxidizing conditions (FeSO4/H2O2) to assess the effects of oxidation on structural degeneration. Exposure to oxidizing conditions resulted in significant collagen deterioration, loss of glutaraldehyde cross-links, and increased susceptibility to collagenase degradation. BP modified through covalent attachment of the oxidant scavenger 3-(4-hydroxy-3,5-di-tert-butylphenyl) propyl amine (DBP) was resistant to all of the monitored parameters of structural damage induced by oxidation. These results indicate that oxidative stress, particularly via hydroxyl radical and tyrosyl radical mediated pathways, may be involved in the structural degeneration of BHV, and that this mechanism may be attenuated through local delivery of antioxidants such as DBP.

摘要

生物假体心脏瓣膜(BHV)的临床应用受到限制,因为 BHV 瓣叶的结构退化导致器械失效。在这项研究中,我们假设氧化应激对此过程有贡献。使用质谱法分析了因器械失效而被取出的 15 个临床 BHV,以研究氧化氨基酸。与未经植入的戊二醛处理牛心包(BP)相比,临床 BHV 组织中存在明显增加的邻-酪氨酸、间-酪氨酸和二酪氨酸水平。BP 在体外暴露于氧化条件(FeSO4/H2O2)下,以评估氧化对结构退化的影响。暴露于氧化条件会导致胶原严重恶化、戊二醛交联丢失以及对胶原酶降解的敏感性增加。通过共价连接氧化剂清除剂 3-(4-羟基-3,5-二叔丁基苯基)丙基胺(DBP)修饰的 BP 可抵抗氧化引起的所有结构损伤监测参数。这些结果表明,氧化应激,特别是通过羟自由基和酪氨酸自由基介导的途径,可能与 BHV 的结构退化有关,并且通过局部递送来减轻这种机制 抗氧化剂如 DBP。

相似文献

1
The susceptibility of bioprosthetic heart valve leaflets to oxidation.
Biomaterials. 2014 Feb;35(7):2097-102. doi: 10.1016/j.biomaterials.2013.11.045. Epub 2013 Dec 18.
5
Evaluation of transcatheter heart valve biomaterials: Computational modeling using bovine and porcine pericardium.
J Mech Behav Biomed Mater. 2019 Sep;97:159-170. doi: 10.1016/j.jmbbm.2019.05.020. Epub 2019 May 17.
8
The Measurement of Bovine Pericardium Density and Its Implications on Leaflet Stress Distribution in Bioprosthetic Heart Valves.
Cardiovasc Eng Technol. 2023 Dec;14(6):853-861. doi: 10.1007/s13239-023-00692-0. Epub 2023 Nov 6.
10
Bioprosthetic heart valve structural degeneration associated with metabolic syndrome: Mitigation with polyoxazoline modification.
Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2219054120. doi: 10.1073/pnas.2219054120. Epub 2022 Dec 27.

引用本文的文献

2
Differential Immune Response to Bioprosthetic Heart Valve Tissues in the α1,3Galactosyltransferase-Knockout Mouse Model.
Bioengineering (Basel). 2023 Jul 13;10(7):833. doi: 10.3390/bioengineering10070833.
3
In Vitro Proof of Concept of a First-Generation Growth-Accommodating Heart Valved Conduit for Pediatric Use.
Macromol Biosci. 2023 Jul;23(7):e2300011. doi: 10.1002/mabi.202300011. Epub 2023 Mar 22.
4
Bioprosthetic heart valve structural degeneration associated with metabolic syndrome: Mitigation with polyoxazoline modification.
Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2219054120. doi: 10.1073/pnas.2219054120. Epub 2022 Dec 27.
5
Proteolytic Degradation Is a Major Contributor to Bioprosthetic Heart Valve Failure.
J Am Heart Assoc. 2023 Jan 3;12(1):e028215. doi: 10.1161/JAHA.122.028215. Epub 2022 Dec 24.
6
Oxidative Stress in Structural Valve Deterioration: A Longitudinal Clinical Study.
Biomolecules. 2022 Oct 31;12(11):1606. doi: 10.3390/biom12111606.
8
Mechanisms and Drug Therapies of Bioprosthetic Heart Valve Calcification.
Front Pharmacol. 2022 Jun 3;13:909801. doi: 10.3389/fphar.2022.909801. eCollection 2022.

本文引用的文献

1
Stabilization of collagen tissues by photocrosslinking.
J Biomed Mater Res A. 2012 Sep;100(9):2239-43. doi: 10.1002/jbm.a.34164. Epub 2012 Apr 10.
2
Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery.
N Engl J Med. 2010 Oct 21;363(17):1597-607. doi: 10.1056/NEJMoa1008232. Epub 2010 Sep 22.
4
Biochemical biomarkers of oxidative collagen damage.
Adv Clin Chem. 2009;49:31-55. doi: 10.1016/s0065-2423(09)49002-4.
5
Bioprosthetic heart valves: modes of failure.
Histopathology. 2009 Aug;55(2):135-44. doi: 10.1111/j.1365-2559.2008.03190.x.
6
Reconstruction of atrioventricular valves with photo-oxidized bovine pericardium.
Interact Cardiovasc Thorac Surg. 2009 Nov;9(5):775-9. doi: 10.1510/icvts.2008.200097. Epub 2009 Aug 14.
7
Lipid-mediated inflammation and degeneration of bioprosthetic heart valves.
Eur J Clin Invest. 2009 Jun;39(6):471-80. doi: 10.1111/j.1365-2362.2009.02132.x.
8
Prosthetic heart valves: selection of the optimal prosthesis and long-term management.
Circulation. 2009 Feb 24;119(7):1034-48. doi: 10.1161/CIRCULATIONAHA.108.778886.
9
Current developments and future prospects for heart valve replacement therapy.
J Biomed Mater Res B Appl Biomater. 2009 Jan;88(1):290-303. doi: 10.1002/jbm.b.31151.
10
Foreign body reaction to biomaterials.
Semin Immunol. 2008 Apr;20(2):86-100. doi: 10.1016/j.smim.2007.11.004. Epub 2007 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验