Suppr超能文献

癌症研究中具有时间-事件标记终点的半参数回归分析。

Semiparametric regression analysis for time-to-event marked endpoints in cancer studies.

作者信息

Hu Chen, Tsodikov Alex

机构信息

RTOG Statistical Center, American College of Radiology, Philadelphia, PA 19103, USA.

Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA

出版信息

Biostatistics. 2014 Jul;15(3):513-25. doi: 10.1093/biostatistics/kxt056. Epub 2013 Dec 29.

Abstract

In cancer studies the disease natural history process is often observed only at a fixed, random point of diagnosis (a survival time), leading to a current status observation (Sun (2006). The statistical analysis of interval-censored failure time data. Berlin: Springer.) representing a surrogate (a mark) (Jacobsen (2006). Point process theory and applications: marked point and piecewise deterministic processes. Basel: Birkhauser.) attached to the observed survival time. Examples include time to recurrence and stage (local vs. metastatic). We study a simple model that provides insights into the relationship between the observed marked endpoint and the latent disease natural history leading to it. A semiparametric regression model is developed to assess the covariate effects on the observed marked endpoint explained by a latent disease process. The proposed semiparametric regression model can be represented as a transformation model in terms of mark-specific hazards, induced by a process-based mixed effect. Large-sample properties of the proposed estimators are established. The methodology is illustrated by Monte Carlo simulation studies, and an application to a randomized clinical trial of adjuvant therapy for breast cancer.

摘要

在癌症研究中,疾病自然史过程通常仅在固定的随机诊断点(生存时间)进行观察,从而产生代表附加在观察到的生存时间上的替代物(一个标记)的当前状态观察结果(孙(2006年)。区间删失失效时间数据的统计分析。柏林:施普林格出版社)(雅各布森(2006年)。点过程理论与应用:标记点和分段确定性过程。巴塞尔:伯克霍夫出版社)。示例包括复发时间和分期(局部与转移)。我们研究一个简单模型,该模型能深入了解观察到的标记终点与导致该终点的潜在疾病自然史之间的关系。开发了一个半参数回归模型,以评估由潜在疾病过程解释的协变量对观察到的标记终点的影响。所提出的半参数回归模型可以表示为基于过程的混合效应诱导的特定标记风险的转换模型。建立了所提出估计量的大样本性质。通过蒙特卡罗模拟研究说明了该方法,并将其应用于乳腺癌辅助治疗的随机临床试验。

相似文献

1
Semiparametric regression analysis for time-to-event marked endpoints in cancer studies.
Biostatistics. 2014 Jul;15(3):513-25. doi: 10.1093/biostatistics/kxt056. Epub 2013 Dec 29.
2
A flexible semiparametric modeling approach for doubly censored data with an application to prostate cancer.
Stat Methods Med Res. 2016 Aug;25(4):1718-35. doi: 10.1177/0962280213498325. Epub 2013 Jul 30.
3
A semiparametric probit model for case 2 interval-censored failure time data.
Stat Med. 2010 Apr 30;29(9):972-81. doi: 10.1002/sim.3832. Epub 2010 Jan 12.
4
Semiparametric transformation models for interval-censored data in the presence of a cure fraction.
Biom J. 2019 Jan;61(1):203-215. doi: 10.1002/bimj.201700304. Epub 2018 Nov 25.
5
A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events.
Lifetime Data Anal. 2020 Jul;26(3):471-492. doi: 10.1007/s10985-019-09486-w. Epub 2019 Sep 23.
6
Semiparametric competing risks regression under interval censoring using the R package intccr.
Comput Methods Programs Biomed. 2019 May;173:167-176. doi: 10.1016/j.cmpb.2019.03.002. Epub 2019 Mar 8.
7
A flexible semiparametric transformation model for recurrent event data.
Lifetime Data Anal. 2015 Jan;21(1):20-41. doi: 10.1007/s10985-013-9285-1. Epub 2013 Nov 17.
8
Semiparametric regression analysis of failure time data with dependent interval censoring.
Stat Med. 2017 Sep 20;36(21):3398-3411. doi: 10.1002/sim.7361. Epub 2017 Jun 5.
9
Semiparametric inference for surrogate endpoints with bivariate censored data.
Biometrics. 2008 Mar;64(1):149-56. doi: 10.1111/j.1541-0420.2007.00834.x. Epub 2007 Jul 25.
10
Semiparametric transformation models with time-varying coefficients for recurrent and terminal events.
Biometrics. 2011 Jun;67(2):404-14. doi: 10.1111/j.1541-0420.2010.01458.x. Epub 2010 Jul 9.

引用本文的文献

1
Efficiency of the Breslow estimator in semiparametric transformation models.
Lifetime Data Anal. 2024 Apr;30(2):291-309. doi: 10.1007/s10985-023-09611-w. Epub 2023 Nov 26.
3
A joint model of cancer incidence, metastasis, and mortality.
Lifetime Data Anal. 2018 Jul;24(3):385-406. doi: 10.1007/s10985-017-9407-2. Epub 2017 Sep 4.
4
Semiparametric time-to-event modeling in the presence of a latent progression event.
Biometrics. 2017 Jun;73(2):463-472. doi: 10.1111/biom.12580. Epub 2016 Aug 24.

本文引用的文献

1
The use and interpretation of competing risks regression models.
Clin Cancer Res. 2012 Apr 15;18(8):2301-8. doi: 10.1158/1078-0432.CCR-11-2097. Epub 2012 Jan 26.
2
Checking semiparametric transformation models with censored data.
Biostatistics. 2012 Jan;13(1):18-31. doi: 10.1093/biostatistics/kxr017. Epub 2011 Jul 23.
3
Semiparametric models: a generalized self-consistency approach.
J R Stat Soc Series B Stat Methodol. 2003 Aug 1;65(3):759-774. doi: 10.1111/1467-9868.00414.
4
A stochastic model for the sizes of detectable metastases.
J Theor Biol. 2006 Dec 7;243(3):407-17. doi: 10.1016/j.jtbi.2006.07.005. Epub 2006 Jul 15.
5
Modelling tumour biology-progression relationships in screening trials.
Stat Med. 2006 Jun 15;25(11):1872-84. doi: 10.1002/sim.2363.
7
Multi-state models for event history analysis.
Stat Methods Med Res. 2002 Apr;11(2):91-115. doi: 10.1191/0962280202SM276ra.
8
Modeling cancer detection: tumor size as a source of information on unobservable stages of carcinogenesis.
Math Biosci. 2001 Jun;171(2):113-42. doi: 10.1016/s0025-5564(01)00058-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验