Hu Chen, Tsodikov Alex
RTOG Statistical Center, American College of Radiology, Philadelphia, PA 19103, USA.
Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
Biostatistics. 2014 Jul;15(3):513-25. doi: 10.1093/biostatistics/kxt056. Epub 2013 Dec 29.
In cancer studies the disease natural history process is often observed only at a fixed, random point of diagnosis (a survival time), leading to a current status observation (Sun (2006). The statistical analysis of interval-censored failure time data. Berlin: Springer.) representing a surrogate (a mark) (Jacobsen (2006). Point process theory and applications: marked point and piecewise deterministic processes. Basel: Birkhauser.) attached to the observed survival time. Examples include time to recurrence and stage (local vs. metastatic). We study a simple model that provides insights into the relationship between the observed marked endpoint and the latent disease natural history leading to it. A semiparametric regression model is developed to assess the covariate effects on the observed marked endpoint explained by a latent disease process. The proposed semiparametric regression model can be represented as a transformation model in terms of mark-specific hazards, induced by a process-based mixed effect. Large-sample properties of the proposed estimators are established. The methodology is illustrated by Monte Carlo simulation studies, and an application to a randomized clinical trial of adjuvant therapy for breast cancer.
在癌症研究中,疾病自然史过程通常仅在固定的随机诊断点(生存时间)进行观察,从而产生代表附加在观察到的生存时间上的替代物(一个标记)的当前状态观察结果(孙(2006年)。区间删失失效时间数据的统计分析。柏林:施普林格出版社)(雅各布森(2006年)。点过程理论与应用:标记点和分段确定性过程。巴塞尔:伯克霍夫出版社)。示例包括复发时间和分期(局部与转移)。我们研究一个简单模型,该模型能深入了解观察到的标记终点与导致该终点的潜在疾病自然史之间的关系。开发了一个半参数回归模型,以评估由潜在疾病过程解释的协变量对观察到的标记终点的影响。所提出的半参数回归模型可以表示为基于过程的混合效应诱导的特定标记风险的转换模型。建立了所提出估计量的大样本性质。通过蒙特卡罗模拟研究说明了该方法,并将其应用于乳腺癌辅助治疗的随机临床试验。