The Institute for Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, Texas; and.
J Neurophysiol. 2014 Mar;111(6):1369-82. doi: 10.1152/jn.00839.2013. Epub 2013 Dec 31.
Disruptions of endoplasmic reticulum (ER) Ca(2+) homeostasis are heavily linked to neuronal pathology. Depletion of ER Ca(2+) stores can result in cellular dysfunction and potentially cell death, although adaptive processes exist to aid in survival. We examined the age and region dependence of one postulated, adaptive response to ER store-depletion (SD), hyperpolarization-activated cation-nonspecific (h)-channel plasticity in neurons of the dorsal and ventral hippocampus (DHC and VHC, respectively) from adolescent and adult rats. With the use of whole-cell patch-clamp recordings from the soma and dendrites of CA1 pyramidal neurons, we observed a change in h-sensitive measurements in response to SD, induced by treatment with cyclopiazonic acid, a sarcoplasmic reticulum/ER Ca(2+)-ATPase blocker. We found that whereas DHC and VHC neurons in adolescent animals respond to SD with a perisomatic expression of SD h plasticity, adult animals express SD h plasticity with a dendritic and somatodendritic locus of plasticity in DHC and VHC neurons, respectively. Furthermore, SD h plasticity in adults was dependent on membrane potential and on the activation of L-type voltage-gated Ca(2+) channels. These results suggest that cellular responses to the impairment of ER function, or ER stress, are dependent on brain region and age and that the differential expression of SD h plasticity could provide a neural basis for region- and age-dependent disease vulnerabilities.
内质网 (ER) Ca(2+) 稳态的破坏与神经元病理学密切相关。ER Ca(2+) 储存的耗竭会导致细胞功能障碍,甚至可能导致细胞死亡,但存在适应性过程以帮助生存。我们研究了背侧和腹侧海马体 (DHC 和 VHC,分别为) 神经元中一种假定的 ER 储存耗竭 (SD) 适应性反应的年龄和区域依赖性,即去极化激活的阳离子非特异性 (h) -通道可塑性。使用来自 CA1 锥体神经元体和树突的全细胞膜片钳记录,我们观察到在使用肌浆网/内质网 Ca(2+) -ATP 酶抑制剂环匹阿尼酸诱导的 SD 下,h 敏感测量值发生变化。我们发现,青春期动物的 DHC 和 VHC 神经元对 SD 的反应是通过体周表达 SD h 可塑性来实现的,而成年动物则在 DHC 和 VHC 神经元中表现出与树突和体树突可塑性相关的 SD h 可塑性。此外,成年动物的 SD h 可塑性依赖于膜电位和 L 型电压门控 Ca(2+) 通道的激活。这些结果表明,细胞对 ER 功能障碍或 ER 应激的反应取决于脑区和年龄,而 SD h 可塑性的差异表达可能为区域和年龄依赖性疾病易感性提供神经基础。