Suppr超能文献

尿中微观固体颗粒的自动识别

Automated recognition of urinary microscopic solid particles.

作者信息

Almadhoun Mohamed D, El-Halees Alaa

机构信息

Information Technology Department, University College of Applied Sciences , Gaza , Palestine and.

出版信息

J Med Eng Technol. 2014 Mar;38(2):104-10. doi: 10.3109/03091902.2013.863394. Epub 2014 Jan 6.

Abstract

Urine analysis reveals the presence of many problems and diseases in the human body. Manual microscopic urine analysis is time-consuming, subjective to human observation and causes mistakes. Computer aided automatic microscopic analysis can help to overcome these problems. This paper introduces a comprehensive approach for automating procedures for detecting and recognition of microscopic urine particles. Samples of red blood cells (RBC), white blood cells (WBC), calcium oxalate, triple phosphate and other undefined images were used in experiments. Image processing functions and segmentation were applied, shape and textural features were extracted and five classifiers were tested to get the best results. Repeated experiments were done for adjusting factors to produce the best evaluation results. A good performance was achieved compared with many related works.

摘要

尿液分析揭示了人体中存在的许多问题和疾病。手动显微镜尿液分析耗时、依赖人工观察且容易出错。计算机辅助自动显微镜分析有助于克服这些问题。本文介绍了一种用于自动检测和识别显微镜下尿液颗粒的综合方法。实验中使用了红细胞(RBC)、白细胞(WBC)、草酸钙、磷酸三钙和其他未定义图像的样本。应用了图像处理功能和分割方法,提取了形状和纹理特征,并测试了五个分类器以获得最佳结果。进行了重复实验以调整因素以产生最佳评估结果。与许多相关工作相比,取得了良好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验