Suppr超能文献

利用在极性溶剂中液滴的溶解作用制备单微米级水凝胶微珠的微流控技术。

Microfluidic production of single micrometer-sized hydrogel beads utilizing droplet dissolution in a polar solvent.

机构信息

Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.

出版信息

Biomicrofluidics. 2013 Oct 24;7(5):54120. doi: 10.1063/1.4826936. eCollection 2013.

Abstract

In this study, a microfluidic process is proposed for preparing monodisperse micrometer-sized hydrogel beads. This process utilizes non-equilibrium aqueous droplets formed in a polar organic solvent. The water-in-oil droplets of the hydrogel precursor rapidly shrunk owing to the dissolution of water molecules into the continuous phase. The shrunken and condensed droplets were then gelled, resulting in the formation of hydrogel microbeads with sizes significantly smaller than the initial droplet size. This study employed methyl acetate as the polar organic solvent, which can dissolve water at 8%. Two types of monodisperse hydrogel beads-Ca-alginate and chitosan-with sizes of 6-10 μm (coefficient of variation < 6%) were successfully produced. In addition, we obtained hydrogel beads with non-spherical morphologies by controlling the degree of droplet shrinkage at the time of gelation and by adjusting the concentration of the gelation agent. Furthermore, the encapsulation and concentration of DNA molecules within the hydrogel beads were demonstrated. The process presented in this study has great potential to produce small and highly concentrated hydrogel beads that are difficult to obtain by using conventional microfluidic processes.

摘要

在这项研究中,提出了一种用于制备单分散微米级水凝胶珠的微流控工艺。该工艺利用在极性有机溶剂中形成的非平衡水相液滴。由于水分子溶解到连续相中,水凝胶前体的油包水液滴迅速收缩。收缩和凝聚的液滴随后胶凝,形成尺寸明显小于初始液滴尺寸的水凝胶微珠。本研究采用乙酸甲酯作为极性有机溶剂,其在 8%的条件下可溶解水。成功制备了两种单分散水凝胶珠——海藻酸钙和壳聚糖,其粒径为 6-10μm(变异系数 < 6%)。此外,我们通过控制胶凝时液滴的收缩程度以及调整胶凝剂的浓度,获得了具有非球形形态的水凝胶珠。此外,还证明了 DNA 分子在水凝胶珠内的包封和浓缩。本研究提出的工艺具有很大的潜力,可以生产出用传统微流控工艺难以获得的小尺寸和高浓度的水凝胶珠。

相似文献

1
Microfluidic production of single micrometer-sized hydrogel beads utilizing droplet dissolution in a polar solvent.
Biomicrofluidics. 2013 Oct 24;7(5):54120. doi: 10.1063/1.4826936. eCollection 2013.
3
Thermo-controlled microfluidic generation of monodisperse alginate microspheres based on external gelation.
RSC Adv. 2024 Oct 10;14(44):32021-32028. doi: 10.1039/d4ra07049f. eCollection 2024 Oct 9.
5
Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator.
Biomicrofluidics. 2012 Nov 7;6(4):44108. doi: 10.1063/1.4765337. eCollection 2012.
6
Formation of monodisperse hierarchical lipid particles utilizing microfluidic droplets in a nonequilibrium state.
Langmuir. 2015 Mar 3;31(8):2334-41. doi: 10.1021/acs.langmuir.5b00043. Epub 2015 Feb 20.
8
Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device.
Biomed Microdevices. 2007 Dec;9(6):855-62. doi: 10.1007/s10544-007-9098-7.
9
Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems.
Lab Chip. 2011 Feb 21;11(4):620-4. doi: 10.1039/c0lc00375a. Epub 2010 Dec 1.
10
Microfluidic generation of monodispersed Janus alginate hydrogel microparticles using water-in-oil emulsion reactant.
Biomicrofluidics. 2022 Mar 3;16(2):024101. doi: 10.1063/5.0077916. eCollection 2022 Mar.

引用本文的文献

1
Enhancing Bone Cement Efficacy with Hydrogel Beads Synthesized by Droplet Microfluidics.
Nanomaterials (Basel). 2024 Feb 1;14(3):302. doi: 10.3390/nano14030302.
3
Bioactive hydrogels for bone regeneration.
Bioact Mater. 2018 May 26;3(4):401-417. doi: 10.1016/j.bioactmat.2018.05.006. eCollection 2018 Dec.
5
DNA hydrogel microspheres and their potential applications for protein delivery and live cell monitoring.
Biomicrofluidics. 2016 May 26;10(3):034112. doi: 10.1063/1.4953046. eCollection 2016 May.

本文引用的文献

1
Poly(vinyl alcohol)-heparin biosynthetic microspheres produced by microfluidics and ultraviolet photopolymerisation.
Biomicrofluidics. 2013 Aug 1;7(4):44109. doi: 10.1063/1.4816714. eCollection 2013.
2
Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator.
Biomicrofluidics. 2012 Nov 7;6(4):44108. doi: 10.1063/1.4765337. eCollection 2012.
3
A microfluidic device for on-chip agarose microbead generation with ultralow reagent consumption.
Biomicrofluidics. 2012 Oct 9;6(4):44101. doi: 10.1063/1.4758460. eCollection 2012.
4
Tuning silica particle shape at fluid interfaces.
Lab Chip. 2012 Dec 7;12(23):4960-3. doi: 10.1039/c2lc40852j.
5
7
Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking.
Biomicrofluidics. 2012 Jun;6(2):26502-265029. doi: 10.1063/1.4720396. Epub 2012 May 18.
8
10
Microfluidic generation and selective degradation of biopolymer-based Janus microbeads.
Biomacromolecules. 2012 Apr 9;13(4):1197-203. doi: 10.1021/bm300159u. Epub 2012 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验