Suppr超能文献

小波分析在当前癌症基因组研究中的应用:综述。

Wavelet analysis in current cancer genome research: a survey.

机构信息

University of Miami, Coral Gables.

Florida International University, Miami.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2013 Nov-Dec;10(6):1442-59. doi: 10.1109/TCBB.2013.134.

Abstract

With the rapid development of next generation sequencing technology, the amount of biological sequence data of the cancer genome increases exponentially, which calls for efficient and effective algorithms that may identify patterns hidden underneath the raw data that may distinguish cancer Achilles' heels. From a signal processing point of view, biological units of information, including DNA and protein sequences, have been viewed as one-dimensional signals. Therefore, researchers have been applying signal processing techniques to mine the potentially significant patterns within these sequences. More specifically, in recent years, wavelet transforms have become an important mathematical analysis tool, with a wide and ever increasing range of applications. The versatility of wavelet analytic techniques has forged new interdisciplinary bounds by offering common solutions to apparently diverse problems and providing a new unifying perspective on problems of cancer genome research. In this paper, we provide a survey of how wavelet analysis has been applied to cancer bioinformatics questions. Specifically, we discuss several approaches of representing the biological sequence data numerically and methods of using wavelet analysis on the numerical sequences.

摘要

随着下一代测序技术的快速发展,癌症基因组的生物序列数据呈指数级增长,这就需要高效、有效的算法来识别隐藏在原始数据下的模式,这些模式可能是癌症的弱点。从信号处理的角度来看,包括 DNA 和蛋白质序列在内的生物信息单元被视为一维信号。因此,研究人员一直在应用信号处理技术来挖掘这些序列中潜在的重要模式。更具体地说,近年来,小波变换已成为一种重要的数学分析工具,其应用范围广泛且不断扩大。小波分析技术的多功能性通过为明显不同的问题提供共同的解决方案,并为癌症基因组研究问题提供新的统一视角,从而形成了新的跨学科界限。在本文中,我们调查了小波分析在癌症生物信息学问题中的应用。具体来说,我们讨论了几种数值表示生物序列数据的方法,以及在数值序列上使用小波分析的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验