Suppr超能文献

Ag-ZnO 纳米复合材料对金黄色葡萄球菌和 GFP 表达的抗生素耐药大肠杆菌的抗菌活性和机制。

Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli.

机构信息

Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.

Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.

出版信息

Colloids Surf B Biointerfaces. 2014 Mar 1;115:359-67. doi: 10.1016/j.colsurfb.2013.12.005. Epub 2013 Dec 18.

Abstract

Emergence of multi-resistant organisms (MROs) leads to ineffective treatment with the currently available medications which pose a great threat to public health and food technology sectors. In this regard, there is an urgent need to strengthen the present therapies or to look over for other potential alternatives like use of "metal nanocomposites". Thus, the present study focuses on synthesis of silver-zinc oxide (Ag-ZnO) nanocomposites which will have a broad-spectrum antibacterial activity against Gram-positive and Gram-negative bacteria. Ag-ZnO nanocomposites of varied molar ratios were synthesized by simple microwave assisted reactions in the absence of surfactants. The crystalline behavior, composition and morphological analysis of the prepared powders were evaluated by X-ray diffraction, infrared spectroscopy, field emission scanning electron microscopy (FE-SEM) and atomic absorption spectrophotometry (AAS). Particle size measurements were carried out by transmission electron microscopy (TEM). Staphylococcus aureus and recombinant green fluorescent protein (GFP) expressing antibiotic resistant Escherichia coli were selected as Gram-positive and Gram-negative model systems respectively and the bactericidal activity of Ag-ZnO nanocomposite was studied. The minimum inhibitory concentration (MIC) and minimum killing concentration (MKC) of the nanocomposite against the model systems were determined by visual turbidity analysis and optical density analysis. Qualitative and quantitative assessments of its antibacterial effects were performed by fluorescent microscopy, fluorescent spectroscopy and Gram staining measurements. Changes in cellular morphology were examined by atomic force microscopy (AFM), FE-SEM and TEM. Finally, on the basis of the present investigation and previously published reports, a plausible antibacterial mechanism of Ag-ZnO nanocomposites was proposed.

摘要

多耐药菌(MRO)的出现导致目前可用的药物治疗无效,这对公共卫生和食品技术部门构成了巨大威胁。在这方面,迫切需要加强现有的治疗方法,或者寻找其他潜在的替代品,如使用“金属纳米复合材料”。因此,本研究集中于合成具有广谱抗革兰氏阳性和革兰氏阴性细菌活性的银-氧化锌(Ag-ZnO)纳米复合材料。通过简单的微波辅助反应在没有表面活性剂的情况下合成了不同摩尔比的Ag-ZnO 纳米复合材料。通过 X 射线衍射、红外光谱、场发射扫描电子显微镜(FE-SEM)和原子吸收分光光度法(AAS)评估了制备粉末的晶体行为、组成和形态分析。通过透射电子显微镜(TEM)进行了粒径测量。金黄色葡萄球菌和表达抗生素抗性 GFP 的重组绿色荧光蛋白大肠杆菌分别被选为革兰氏阳性和革兰氏阴性模型系统,研究了 Ag-ZnO 纳米复合材料的杀菌活性。通过目视浊度分析和光密度分析确定了纳米复合材料对模型系统的最小抑菌浓度(MIC)和最小杀菌浓度(MKC)。通过荧光显微镜、荧光光谱和革兰氏染色测量对其抗菌效果进行了定性和定量评估。通过原子力显微镜(AFM)、FE-SEM 和 TEM 检查了细胞形态的变化。最后,根据本研究和以前发表的报告,提出了 Ag-ZnO 纳米复合材料的合理抗菌机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验