Université de Toulouse, UPS, UMR 152 (Laboratoire de pharmacochimie et pharmacologie pour le développement, Pharma-DEV), F-31062 Toulouse cedex 9, France; IRD, UMR 152, F-31062 Toulouse cedex 9, France.
Université de Toulouse, UPS, UMR 152 (Laboratoire de pharmacochimie et pharmacologie pour le développement, Pharma-DEV), F-31062 Toulouse cedex 9, France; IRD, UMR 152, F-31062 Toulouse cedex 9, France.
Int J Pharm. 2014 Apr 10;464(1-2):214-24. doi: 10.1016/j.ijpharm.2014.01.001. Epub 2014 Jan 8.
We recently showed that the indolone-N-oxides can be promising candidates for the treatment of chloroquine-resistant malaria. However, the in vivo assays have been hampered by the very poor aqueous solubility of these compounds resulting in poor and variable activity. Here, we describe the preparation, characterization and in vivo evaluation of biodegradable albumin-bound indolone-N-oxide nanoparticles. Nanoparticles were prepared by precipitation followed by high-pressure homogenization and characterized by photon correlation spectroscopy, transmission electron microscopy, differential scanning calorimetry and X-ray powder diffraction. The process was optimized to yield nanoparticles of controllable diameter with narrow size distribution suitable for intravenous administration, which guarantees direct drug contact with parasitized erythrocytes. Stable nanoparticles showed greatly enhanced dissolution rate (complete drug release within 30 min compared to 1.5% of pure drug) preserving the rapid antimalarial activity. The formulation achieved complete cure of Plasmodium berghei-infected mice at 25mg/kg with parasitemia inhibition (99.1%) comparable to that of artesunate and chloroquine and was remarkably more effective in prolonging survival time and inhibiting recrudescence. In 'humanized' mice infected with Plasmodium falciparum, the same dose proved to be highly effective: with parasitemia reduced by 97.5% and the mean survival time prolonged. This formulation can help advance the preclinical trials of indolone-N-oxides. Albumin-bound nanoparticles represent a new strategic approach to use this most abundant plasma protein to target malaria-infected erythrocytes.
我们最近表明,吲哚啉-N-氧化物可以成为治疗氯喹耐药性疟疾的有前途的候选药物。然而,由于这些化合物的水溶性非常差,体内试验受到了阻碍,导致活性差且不稳定。在这里,我们描述了可生物降解的白蛋白结合型吲哚啉-N-氧化物纳米颗粒的制备、表征和体内评估。纳米颗粒通过沉淀后高压匀化制备,并通过光相关光谱法、透射电子显微镜、差示扫描量热法和 X 射线粉末衍射进行表征。该过程经过优化,可得到具有可控直径和窄粒径分布的纳米颗粒,适合静脉注射,可保证药物直接与寄生红细胞接触。稳定的纳米颗粒显示出大大提高的溶解速率(与纯药物相比,在 30 分钟内完全释放药物),保持了快速的抗疟活性。该制剂以 25mg/kg 的剂量实现了对感染疟原虫的小鼠的完全治愈,寄生虫抑制率(99.1%)与青蒿琥酯和氯喹相当,在延长存活时间和抑制复发方面的效果明显更好。在感染疟原虫 falciparum 的“人源化”小鼠中,相同剂量也被证明非常有效:寄生虫减少 97.5%,平均存活时间延长。该制剂可以帮助推进吲哚啉-N-氧化物的临床前试验。白蛋白结合纳米颗粒代表了一种利用这种最丰富的血浆蛋白靶向感染疟原虫的红细胞的新策略。