Suppr超能文献

谷氨酸转运体在大脑氧化还原稳态中的作用。

Role of glutamate transporters in redox homeostasis of the brain.

作者信息

Robert Stephanie M, Ogunrinu-Babarinde Toyin, Holt Kenneth T, Sontheimer Harald

机构信息

Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA.

Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA.

出版信息

Neurochem Int. 2014 Jul;73:181-91. doi: 10.1016/j.neuint.2014.01.001. Epub 2014 Jan 10.

Abstract

Redox homeostasis is especially important in the brain where high oxygen consumption produces an abundance of harmful oxidative by-products. Glutathione (GSH) is a tripeptide non-protein thiol. It is the central nervous system's most abundant antioxidant and the master controller of brain redox homeostasis. The glutamate transporters, System xc(-) (SXC) and the Excitatory Amino Acid Transporters (EAAT), play important, synergistic roles in the synthesis of GSH. In glial cells, SXC mediates the uptake of cystine, which after intracellular reduction to cysteine, reacts with glutamate during the rate-limiting step of GSH synthesis. EAAT3 mediates direct cysteine uptake for neuronal GSH synthesis. SXC and EAAT work in concert in glial cells to provide two intracellular substrates for GSH synthesis, cystine and glutamate. Their cyclical basal function also prevents a buildup of extracellular glutamate, which SXC releases extracellularly in exchange for cystine uptake. Maintaining extracellular glutamate homeostasis is critical to prevent neuronal toxicity, as well as glutamate-mediated SXC inhibition, which could lead to a depletion of intracellular GSH and loss of cellular redox control. Many neurological diseases show evidence of GSH dysfunction, and increased GSH has been widely associated with chemotherapy and radiotherapy resistance of gliomas. We present evidence suggesting that gliomas expressing elevated levels of SXC are more reliant on GSH for growth and survival. They have an increased inherent radiation resistance, however, inhibition of SXC can increase tumor sensitivity at low radiation doses. GSH depletion through SXC inhibition may be a viable mechanism to enhance current glioma treatment strategies and make tumors more sensitive to radiation and chemotherapy protocols.

摘要

氧化还原稳态在大脑中尤为重要,因为大脑高耗氧量会产生大量有害的氧化副产物。谷胱甘肽(GSH)是一种三肽非蛋白质硫醇。它是中枢神经系统中最丰富的抗氧化剂,也是大脑氧化还原稳态的主要控制器。谷氨酸转运体,系统xc(-)(SXC)和兴奋性氨基酸转运体(EAAT),在GSH的合成中发挥重要的协同作用。在神经胶质细胞中,SXC介导胱氨酸的摄取,胱氨酸在细胞内还原为半胱氨酸后,在GSH合成的限速步骤中与谷氨酸反应。EAAT3介导神经元GSH合成所需的半胱氨酸直接摄取。SXC和EAAT在神经胶质细胞中协同工作,为GSH合成提供两种细胞内底物,即胱氨酸和谷氨酸。它们的周期性基础功能还可防止细胞外谷氨酸的积累,SXC将谷氨酸释放到细胞外以交换胱氨酸的摄取。维持细胞外谷氨酸稳态对于预防神经元毒性以及谷氨酸介导的SXC抑制至关重要,因为这可能导致细胞内GSH耗竭和细胞氧化还原控制丧失。许多神经系统疾病都有GSH功能障碍的证据,GSH增加与胶质瘤的化疗和放疗耐药性广泛相关。我们提供的证据表明,表达高水平SXC的胶质瘤在生长和存活方面更依赖GSH。它们具有增强了的固有辐射抗性,然而,抑制SXC可在低辐射剂量下增加肿瘤敏感性。通过抑制SXC使GSH耗竭可能是一种可行的机制,以增强当前的胶质瘤治疗策略,并使肿瘤对放疗和化疗方案更敏感。

相似文献

1
Role of glutamate transporters in redox homeostasis of the brain.
Neurochem Int. 2014 Jul;73:181-91. doi: 10.1016/j.neuint.2014.01.001. Epub 2014 Jan 10.
2
Structural investigation of human cystine/glutamate antiporter system x (Sx ) using homology modeling and molecular dynamics.
Front Mol Biosci. 2022 Dec 1;9:1064199. doi: 10.3389/fmolb.2022.1064199. eCollection 2022.
4
EAAT and Xc⁻ Exchanger Inhibition Depletes Glutathione in the Transformed Human Lens Epithelial Cell Line SRA 01/04.
Curr Eye Res. 2016;41(3):357-66. doi: 10.3109/02713683.2015.1017651. Epub 2015 Apr 21.
5
Glial Glutamate Transporter-Mediated Plasticity: System x/xCT/SLC7A11 and EAAT1/2 in Brain Diseases.
Front Biosci (Landmark Ed). 2023 Mar 20;28(3):57. doi: 10.31083/j.fbl2803057.
6
Dysregulated Glutamate Transporter SLC1A1 Propels Cystine Uptake via Xc for Glutathione Synthesis in Lung Cancer.
Cancer Res. 2021 Feb 1;81(3):552-566. doi: 10.1158/0008-5472.CAN-20-0617. Epub 2020 Nov 23.
8
SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma.
Sci Transl Med. 2015 May 27;7(289):289ra86. doi: 10.1126/scitranslmed.aaa8103.
9
The glutamate transporters EAAT2 and EAAT3 mediate cysteine uptake in cortical neuron cultures.
J Neurochem. 2003 Mar;84(6):1332-9. doi: 10.1046/j.1471-4159.2003.01630.x.
10
Role of neuronal glutamate transporter in the cysteine uptake and intracellular glutathione levels in cultured cortical neurons.
J Neural Transm (Vienna). 2003 Dec;110(12):1337-48. doi: 10.1007/s00702-003-0049-z. Epub 2003 Oct 24.

引用本文的文献

1
3
Disrupted glutamate homeostasis as a target for glioma therapy.
Pharmacol Rep. 2024 Dec;76(6):1305-1317. doi: 10.1007/s43440-024-00644-y. Epub 2024 Sep 11.
4
Nature-Inspired Bioactive Compounds: A Promising Approach for Ferroptosis-Linked Human Diseases?
Molecules. 2023 Mar 14;28(6):2636. doi: 10.3390/molecules28062636.
5
Redox Imbalance as a Common Pathogenic Factor Linking Hearing Loss and Cognitive Decline.
Antioxidants (Basel). 2023 Jan 31;12(2):332. doi: 10.3390/antiox12020332.
6
Glutamic Acid Transporters: Targets for Neuroprotective Therapies in Parkinson's Disease.
Front Neurosci. 2021 Jun 16;15:678154. doi: 10.3389/fnins.2021.678154. eCollection 2021.
7
Antioxidant Effect of Propofol in Gliomas and Its Association With Divalent Metal Transporter 1.
Front Oncol. 2020 Nov 24;10:590931. doi: 10.3389/fonc.2020.590931. eCollection 2020.
8
Does hearing loss lead to dementia? A review of the literature.
Hear Res. 2021 Mar 15;402:108038. doi: 10.1016/j.heares.2020.108038. Epub 2020 Jul 30.
10
Induction of ferroptosis and mitochondrial dysfunction by oxidative stress in PC12 cells.
Sci Rep. 2018 Jan 12;8(1):574. doi: 10.1038/s41598-017-18935-1.

本文引用的文献

1
N-acetylcysteine reverses existing cognitive impairment and increased oxidative stress in glutamate transporter type 3 deficient mice.
Neuroscience. 2012 Sep 18;220:85-9. doi: 10.1016/j.neuroscience.2012.06.044. Epub 2012 Jun 23.
2
EAAC1 gene deletion alters zinc homeostasis and enhances cortical neuronal injury after transient cerebral ischemia in mice.
J Trace Elem Med Biol. 2012 Jun;26(2-3):85-8. doi: 10.1016/j.jtemb.2012.04.010. Epub 2012 May 8.
4
Mitochondria and cancer: a growing role in apoptosis, cancer cell metabolism and dedifferentiation.
Adv Exp Med Biol. 2012;942:287-308. doi: 10.1007/978-94-007-2869-1_13.
5
Severe dysfunction of respiratory chain and cholesterol metabolism in Atp7b(-/-) mice as a model for Wilson disease.
Biochim Biophys Acta. 2011 Dec;1812(12):1607-15. doi: 10.1016/j.bbadis.2011.08.011. Epub 2011 Sep 2.
6
Chemistry and biology of reactive oxygen species in signaling or stress responses.
Nat Chem Biol. 2011 Jul 18;7(8):504-11. doi: 10.1038/nchembio.607.
7
Oxidative damage in multiple sclerosis lesions.
Brain. 2011 Jul;134(Pt 7):1914-24. doi: 10.1093/brain/awr128. Epub 2011 Jun 7.
9
Modulation of neuronal glutathione synthesis by EAAC1 and its interacting protein GTRAP3-18.
Amino Acids. 2012 Jan;42(1):163-9. doi: 10.1007/s00726-011-0861-y. Epub 2011 Mar 5.
10
Glutamate and the biology of gliomas.
Glia. 2011 Aug;59(8):1181-9. doi: 10.1002/glia.21113. Epub 2010 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验