Suppr超能文献

微管酪氨酸硝基化调节植物细胞的微管组织。

Tubulin tyrosine nitration regulates microtubule organization in plant cells.

机构信息

Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine Kyiv, Ukraine.

出版信息

Front Plant Sci. 2013 Dec 26;4:530. doi: 10.3389/fpls.2013.00530. eCollection 2013.

Abstract

During last years, selective tyrosine nitration of plant proteins gains importance as well-recognized pathway of direct nitric oxide (NO) signal transduction. Plant microtubules are one of the intracellular signaling targets for NO, however, the molecular mechanisms of NO signal transduction with the involvement of cytoskeletal proteins remain to be elucidated. Since biochemical evidence of plant α-tubulin tyrosine nitration has been obtained recently, potential role of this posttranslational modification in regulation of microtubules organization in plant cell is estimated in current paper. It was shown that 3-nitrotyrosine (3-NO2-Tyr) induced partially reversible Arabidopsis primary root growth inhibition, alterations of root hairs morphology and organization of microtubules in root cells. It was also revealed that 3-NO2-Tyr intensively decorates such highly dynamic microtubular arrays as preprophase bands, mitotic spindles and phragmoplasts of Nicotiana tabacum Bright Yellow-2 (BY-2) cells under physiological conditions. Moreover, 3D models of the mitotic kinesin-8 complexes with the tail of detyrosinated, tyrosinated and tyrosine nitrated α-tubulin (on C-terminal Tyr 450 residue) from Arabidopsis were reconstructed in silico to investigate the potential influence of tubulin nitrotyrosination on the molecular dynamics of α-tubulin and kinesin-8 interaction. Generally, presented data suggest that plant α-tubulin tyrosine nitration can be considered as its common posttranslational modification, the direct mechanism of NO signal transduction with the participation of microtubules under physiological conditions and one of the hallmarks of the increased microtubule dynamics.

摘要

在过去的几年中,植物蛋白的选择性酪氨酸硝化作为公认的一氧化氮(NO)信号转导途径变得越来越重要。植物微管是 NO 的细胞内信号转导的目标之一,然而,涉及细胞骨架蛋白的 NO 信号转导的分子机制仍有待阐明。由于最近已经获得了植物α-微管蛋白酪氨酸硝化的生化证据,因此本文估计了这种翻译后修饰在调节植物细胞中微管组织中的潜在作用。研究表明,3-硝基酪氨酸(3-NO2-Tyr)诱导拟南芥初生根生长部分可逆性抑制,根毛形态和根细胞微管组织发生变化。还揭示了 3-NO2-Tyr 在生理条件下强烈修饰诸如前期带、有丝分裂纺锤体和烟草 BY-2 细胞的成膜体等高度动态的微管阵列。此外,还通过计算机模拟构建了拟南芥具有去酪氨酸化、酪氨酸化和酪氨酸硝化α-微管(C 末端 Tyr450 残基)尾的有丝分裂动力蛋白-8 复合物的 3D 模型,以研究微管硝化对α-微管和动力蛋白-8 相互作用的分子动力学的潜在影响。总的来说,提出的数据表明,植物α-微管蛋白酪氨酸硝化可以被认为是其常见的翻译后修饰,是在生理条件下涉及微管的 NO 信号转导的直接机制,也是增加微管动力学的标志之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9aa/3872735/f13f34611ac6/fpls-04-00530-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验