Suppr超能文献

在硫氧还蛋白还原酶催化机制中作为电子受体的硒。

Selenium as an electron acceptor during the catalytic mechanism of thioredoxin reductase.

作者信息

Lothrop Adam P, Snider Gregg W, Ruggles Erik L, Patel Amar S, Lees Watson J, Hondal Robert J

机构信息

Department of Biochemistry, University of Vermont, College of Medicine , 89 Beaumont Avenue, Given Building Room B413, Burlington, Vermont 05405, United States.

出版信息

Biochemistry. 2014 Feb 4;53(4):654-63. doi: 10.1021/bi400658g. Epub 2014 Jan 23.

Abstract

Mammalian thioredoxin reductase (TR) is a pyridine nucleotide disulfide oxidoreductase that uses the rare amino acid selenocysteine (Sec) in place of the more commonly used amino acid cysteine (Cys) in the redox-active tetrapeptide Gly-Cys-Sec-Gly motif to catalyze thiol/disulfide exchange reactions. Sec can accelerate the rate of these exchange reactions (i) by being a better nucleophile than Cys, (ii) by being a better electrophile than Cys, (iii) by being a better leaving group than Cys, or (iv) by using a combination of all three of these factors, being more chemically reactive than Cys. The role of the selenolate as a nucleophile in the reaction mechanism was recently demonstrated by creating a mutant of human thioredoxin reductase-1 in which the Cys497-Sec498 dyad of the C-terminal redox center was mutated to either a Ser497-Cys498 dyad or a Cys497-Ser498 dyad. Both mutant enzymes were incubated with human thioredoxin (Trx) to determine which mutant formed a mixed disulfide bond complex. Only the mutant containing the Ser497-Cys498 dyad formed a complex, and this structure has been determined by X-ray crystallography [Fritz-Wolf, K., Kehr, S., Stumpf, M., Rahlfs, S., and Becker, K. (2011) Crystal structure of the human thioredoxin reductase-thioredoxin complex. Nat. Commun. 2, 383]. This experimental observation most likely means that the selenolate is the nucleophile initially attacking the disulfide bond of Trx because a complex resulted only when Cys was present in the second position of the dyad. As a nucleophile, the selenolate of Sec helps to accelerate the rate of this exchange reaction relative to Cys in the Sec → Cys mutant enzyme. Another thiol/disulfide exchange reaction that occurs in the enzymatic cycle of the enzyme is the transfer of electrons from the thiolate of the interchange Cys residue of the N-terminal redox center to the eight-membered selenosulfide ring of the C-terminal redox center. The selenium atom of the selenosulfide could accelerate this exchange reaction by being a good leaving group (attack at the sulfur atom) or by being a good electrophile (attack at the selenium atom). Here we provide strong evidence that the selenium atom is attacked in this exchange step. This was shown by creating a mutant enzyme containing a Gly-Gly-Seccoo- motif that had 0.5% of the activity of the wild-type enzyme. This mutant lacks the adjacent, resolving Cys residue, which acts by attacking the mixed selenosulfide bond that occurs between the enzyme and substrate. A similar result was obtained when Sec was replaced with homocysteine. These results highlight the role of selenium as an electron acceptor in the catalytic mechanism of thioredoxin reductase as well as its established role as a donor of an electron to the substrate.

摘要

哺乳动物硫氧还蛋白还原酶(TR)是一种吡啶核苷酸二硫化物氧化还原酶,在氧化还原活性四肽Gly-Cys-Sec-Gly基序中,它使用稀有的氨基酸硒代半胱氨酸(Sec)取代更常用的氨基酸半胱氨酸(Cys),以催化硫醇/二硫键交换反应。Sec可以通过以下方式加速这些交换反应的速率:(i)作为比Cys更好的亲核试剂;(ii)作为比Cys更好的亲电试剂;(iii)作为比Cys更好的离去基团;或者(iv)通过综合利用这三个因素,比Cys具有更高的化学反应活性。最近,通过创建人硫氧还蛋白还原酶-1的突变体,其中C端氧化还原中心的Cys497-Sec498二元组被突变为Ser497-Cys498二元组或Cys497-Ser498二元组,证明了硒醇盐作为亲核试剂在反应机制中的作用。将这两种突变酶与人硫氧还蛋白(Trx)一起孵育,以确定哪种突变体形成了混合二硫键复合物。只有含有Ser497-Cys498二元组的突变体形成了复合物,并且该结构已通过X射线晶体学确定[弗里茨-沃尔夫,K.,凯尔,S.,施图姆普夫,M.,拉尔夫斯,S.,和贝克尔,K.(2011年)人硫氧还蛋白还原酶-硫氧还蛋白复合物的晶体结构。《自然通讯》2,383]。这一实验观察结果很可能意味着硒醇盐是最初攻击Trx二硫键的亲核试剂,因为只有当二元组的第二个位置存在Cys时才会形成复合物。作为亲核试剂,Sec的硒醇盐相对于Sec→Cys突变酶中的Cys有助于加速这种交换反应的速率。在该酶的酶促循环中发生的另一个硫醇/二硫键交换反应是电子从N端氧化还原中心的互换Cys残基的硫醇盐转移到C端氧化还原中心的八元硒硫化物环。硒硫化物的硒原子可以通过作为良好的离去基团(攻击硫原子)或作为良好的亲电试剂(攻击硒原子)来加速这种交换反应。在这里,我们提供了有力的证据表明在这个交换步骤中硒原子受到攻击。通过创建一种含有Gly-Gly-Seccoo-基序的突变酶证明了这一点,该突变酶的活性仅为野生型酶的0.5%。该突变体缺少相邻的、起分解作用的Cys残基,该残基通过攻击酶与底物之间形成的混合硒硫键来发挥作用。当Sec被同型半胱氨酸取代时也得到了类似的结果。这些结果突出了硒在硫氧还蛋白还原酶催化机制中作为电子受体的作用以及其作为底物电子供体的既定作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6225/3986015/3cb7a6644fea/bi-2013-00658g_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验