Suppr超能文献

特征向量同步、图刚性与分子问题。

Eigenvector synchronization, graph rigidity and the molecule problem.

作者信息

Cucuringu Mihai, Singer Amit, Cowburn David

机构信息

Program in Applied and Computational Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA.

Department of Mathematics and PACM, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA.

出版信息

Inf inference. 2012 Dec;1(1):21. doi: 10.1093/imaiai/ias002.

Abstract

The graph realization problem has received a great deal of attention in recent years, due to its importance in applications such as wireless sensor networks and structural biology. In this paper, we extend the previous work and propose the 3D-As-Synchronized-As-Possible (3D-ASAP) algorithm, for the graph realization problem in ℝ, given a sparse and noisy set of distance measurements. 3D-ASAP is a divide and conquer, non-incremental and non-iterative algorithm, which integrates local distance information into a global structure determination. Our approach starts with identifying, for every node, a subgraph of its 1-hop neighborhood graph, which can be accurately embedded in its own coordinate system. In the noise-free case, the computed coordinates of the sensors in each patch must agree with their global positioning up to some unknown rigid motion, that is, up to translation, rotation and possibly reflection. In other words, to every patch, there corresponds an element of the Euclidean group, Euc(3), of rigid transformations in ℝ, and the goal was to estimate the group elements that will properly align all the patches in a globally consistent way. Furthermore, 3D-ASAP successfully incorporates information specific to the molecule problem in structural biology, in particular information on known substructures and their orientation. In addition, we also propose 3D-spectral-partitioning (SP)-ASAP, a faster version of 3D-ASAP, which uses a spectral partitioning algorithm as a pre-processing step for dividing the initial graph into smaller subgraphs. Our extensive numerical simulations show that 3D-ASAP and 3D-SP-ASAP are very robust to high levels of noise in the measured distances and to sparse connectivity in the measurement graph, and compare favorably with similar state-of-the-art localization algorithms.

摘要

近年来,图实现问题因其在无线传感器网络和结构生物学等应用中的重要性而备受关注。在本文中,我们扩展了先前的工作,并针对实数空间中的图实现问题提出了3D尽可能同步(3D-ASAP)算法,该算法基于一组稀疏且有噪声的距离测量值。3D-ASAP是一种分治、非增量且非迭代的算法,它将局部距离信息集成到全局结构确定中。我们的方法首先为每个节点识别其1跳邻域图的一个子图,该子图可以精确地嵌入到其自身的坐标系中。在无噪声的情况下,每个补丁中传感器的计算坐标必须与其全局定位在某种未知的刚体运动下一致,即平移、旋转以及可能的反射。换句话说,每个补丁都对应实数空间中刚体变换的欧几里得群Euc(3)中的一个元素,目标是估计能以全局一致的方式正确对齐所有补丁的群元素。此外,3D-ASAP成功地纳入了结构生物学中分子问题的特定信息,特别是关于已知子结构及其方向的信息。另外,我们还提出了3D谱划分(SP)-ASAP,它是3D-ASAP的一个更快版本,使用谱划分算法作为预处理步骤,将初始图划分为更小的子图。我们广泛的数值模拟表明,3D-ASAP和3D-SP-ASAP对于测量距离中的高水平噪声和测量图中的稀疏连接非常鲁棒,并且与类似的最新定位算法相比具有优势。

相似文献

1
Eigenvector synchronization, graph rigidity and the molecule problem.
Inf inference. 2012 Dec;1(1):21. doi: 10.1093/imaiai/ias002.
2
Sensor Network Localization by Eigenvector Synchronization Over the Euclidean Group.
ACM Trans Sens Netw. 2012 Jul;8(3). doi: 10.1145/2240092.2240093.
3
Parallel Structure from Motion for Sparse Point Cloud Generation in Large-Scale Scenes.
Sensors (Basel). 2021 Jun 7;21(11):3939. doi: 10.3390/s21113939.
4
RNA graph partitioning for the discovery of RNA modularity: a novel application of graph partition algorithm to biology.
PLoS One. 2014 Sep 4;9(9):e106074. doi: 10.1371/journal.pone.0106074. eCollection 2014.
5
Point Cloud Denoising via Feature Graph Laplacian Regularization.
IEEE Trans Image Process. 2020 Jan 30. doi: 10.1109/TIP.2020.2969052.
6
3D Point Cloud Denoising Using Graph Laplacian Regularization of a Low Dimensional Manifold Model.
IEEE Trans Image Process. 2019 Dec 30. doi: 10.1109/TIP.2019.2961429.
7
Angular Synchronization by Eigenvectors and Semidefinite Programming.
Appl Comput Harmon Anal. 2011 Jan 30;30(1):20-36. doi: 10.1016/j.acha.2010.02.001.
8
Dense Subgraph Partition of Positive Hypergraphs.
IEEE Trans Pattern Anal Mach Intell. 2015 Mar;37(3):541-54. doi: 10.1109/TPAMI.2014.2346173.
9
A remark on global positioning from local distances.
Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9507-11. doi: 10.1073/pnas.0709842104. Epub 2008 Jul 8.

引用本文的文献

1
Quantitatively Visualizing Bipartite Datasets.
Phys Rev X. 2023 Apr-Jun;13(2). doi: 10.1103/physrevx.13.021002. Epub 2023 Apr 4.
2
Three-dimensional alignment of density maps in cryo-electron microscopy.
Biol Imaging. 2023 Mar 10;3:e8. doi: 10.1017/S2633903X23000089. eCollection 2023.
4
RIGID GRAPH COMPRESSION: MOTIF-BASED RIGIDITY ANALYSIS FOR DISORDERED FIBER NETWORKS.
Multiscale Model Simul. 2018;16(3):1283-1304. doi: 10.1137/17M1157271. Epub 2018 Aug 21.
5
Integrating NOE and RDC using sum-of-squares relaxation for protein structure determination.
J Biomol NMR. 2017 Jul;68(3):163-185. doi: 10.1007/s10858-017-0108-7. Epub 2017 Jun 14.
6
Temporal ordering and registration of images in studies of developmental dynamics.
Development. 2015 May 1;142(9):1717-24. doi: 10.1242/dev.119396. Epub 2015 Apr 1.

本文引用的文献

1
Sensor Network Localization by Eigenvector Synchronization Over the Euclidean Group.
ACM Trans Sens Netw. 2012 Jul;8(3). doi: 10.1145/2240092.2240093.
3
Least-squares fitting of two 3-d point sets.
IEEE Trans Pattern Anal Mach Intell. 1987 May;9(5):698-700. doi: 10.1109/tpami.1987.4767965.
4
Angular Synchronization by Eigenvectors and Semidefinite Programming.
Appl Comput Harmon Anal. 2011 Jan 30;30(1):20-36. doi: 10.1016/j.acha.2010.02.001.
5
The HADDOCK web server for data-driven biomolecular docking.
Nat Protoc. 2010 May;5(5):883-97. doi: 10.1038/nprot.2010.32. Epub 2010 Apr 15.
6
A remark on global positioning from local distances.
Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9507-11. doi: 10.1073/pnas.0709842104. Epub 2008 Jul 8.
7
Extending the power of quantum chemistry to large systems with the fragment molecular orbital method.
J Phys Chem A. 2007 Aug 2;111(30):6904-14. doi: 10.1021/jp0716740. Epub 2007 May 19.
8
ARIA2: automated NOE assignment and data integration in NMR structure calculation.
Bioinformatics. 2007 Feb 1;23(3):381-2. doi: 10.1093/bioinformatics/btl589. Epub 2006 Nov 22.
9
NMR in the SPINE Structural Proteomics project.
Acta Crystallogr D Biol Crystallogr. 2006 Oct;62(Pt 10):1150-61. doi: 10.1107/S0907444906032070. Epub 2006 Sep 19.
10
Weak alignment NMR: a hawk-eyed view of biomolecular structure.
Curr Opin Struct Biol. 2005 Oct;15(5):563-70. doi: 10.1016/j.sbi.2005.08.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验